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Abstract

Automated theorem proving with connection tableau
calculi imposes search problems in tremendous search
spaces. In this paper, we present a new approach to
search space reduction in connection tableau calcu-
li. In our approach structurally similar parts of the
search space are compressed by means of disjunctive
constraints. We describe the necessary changes of the
calculus, and we develop elaborate techniques for an
efficient constraint processing. Moreover, we present
an experimental evaluation of our approach.

Introduction
Automated theorem proving (ATP) is an important re-
search area in artificial intelligence. The objective of
an ATP system is to find out whether or not a query
(or goal) is a logical consequence of a set of axioms (the
query and the axioms have to be formally specified, for
example in first-order clause logic). For this purpose,
system-specific inference rules are applied systemati-
cally. A sequence of inference rule applications which
shows that a given query is a logical consequence of a
given set of axioms is called a proof.

The main strength of ATP systems is that they allow
a purely declarative description of knowledge. How-
ever, the ability to handle declarative specifications in-
troduces the aspect of search into the deduction pro-
cess. The set of all objects which can be derived from
an input problem by means of the inference rules forms
the search space. In general, a tremendous search space
has to be explored during the search for a proof. A
large amount of the research performed in the field of
ATP, therefore, focuses on search space reduction.

In this paper, we concentrate on search space re-
duction for connection tableau calculi (Letz, Mayr, 
Goller 1994) which are successfully employed in ATP.
For Horn input problems, search in connection tableau
calculi is comparable with the interpretation of PRO-
LOG programs. For non-Horn problems, there is an
additional inference rule. Due to simplicity reasons, in
this paper we will deal with the Horn case only. How-
ever, since the transfer to non-Horn input problems is
straight forward (see (Ibens 1999)), the approach is 
plicable for ATP in full first-order logic. We are now
going to describe how a certain kind of "redundancy
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of the search" arises from structurally similar input
clauses. This kind of redundancy can be tackled with
our new technique.

In general, structurally similar clauses in the input
to a connection tableau calculus lead to structurally
similar computation trees. For example, in the input
problem

S = {~p(X, Y) V -~q(Y),
p(al, f(bl)),... ,p(an, f(bn)),
q(g(dl)),..., q(g(dm))}

with n > 1 and m > 1, the unit clauses in each of the
sequences p( al , f ( bl ) ) , . . . , p( an , f ( bn ) ) and q(g( 
¯ .., q(g(dm)) only differ from each other in certain sub-
terms. When given the initial computation tree

To=
-~p(X, Y) -,q(Y)

n inferences are possible alternatively at the literal
-~p(X, Y). These possible inferences involve the input
clauses p(ai, f(bl)),..., p(a=, f(bn)) and result in com-
putation trees

Ti = (for 1 < i < n).

-’p(ai, f(bi)) "q(f(ai))

I
p(ai, f(bi))

The computation trees TI, ¯ ¯., Tn only differ from each
other in certain sub-terms occurring in the literals.
Therefore, it seems redundant to construct each sin-
gle computation tree Ti (1 < i < n). A simultaneous
processing of T1,..., Tn seems more sensible. We now
describe how this can be achieved.

The structurally similar unit clauses p(al,f(bl)),
¯ .. ,p(an, f(nn)) can be compressed into the new clause
p(V,f(W)) with the additional condition (V,W) E
{(al, bl),..., (a,, b,)}. The new clause expresses 
common information of the structurally similar unit
clauses, and the condition encodes their differences.
The condition can also be viewed as defining the al-
lowed instances of the clause p(V, f(W)). Thus, the
clause set {p( a l , f ( bl ) ) , . . . , p( an , f ( bn isequivalent
to the unit clause p(V, f(W)) with its condition.
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When given the above computation tree To, only one
inference is possible at the literal -,p(X, Y) when using
the new clause instead of the compressed unit clauses.
The resulting computation tree is

T

~p(v, l(w)) ~q(y(w))
I

p(r,I(w))
with the condition (V,W) e {(aa,bi),..., (an,bn)}.
The condition represents the allowed assignments to
the variables occurring in the literals of T. T together
with its condition can therefore be viewed as encoding
the ordinary computation trees Ta ,..., Tn.

Recapitulating, the computation trees Ti,... ,Tn
have been compressed into a single computation tree
T with an additional condition. The compression
has been performed by means of a compression of
the structurally similar input clauses p(al, f(bl)),...,
p(an, f(bn)). Since neither at the computation trees
Tx,...,Tn nor at the computation tree T further in-
ferences are possible, a pruning of the search space
has been achieved. The number of tried inferences
can be reduced even more if also the structurally
similar input clauses q(g(dl)),...,q(g(dm)) com-
pressed into the single clause q(g(Z)) with the condi-
tion Z E {bi,... ,b,~).

In the example, there was no need to test the satis-
fiability of the conditions associated with computation
trees. In general, however, a satisfiability test becomes
necessary. In order not to simply move the search space
from the computation trees into the satisfiability test,
an intelligent handling of conditions is necessary. We
first outline our new approach, then we present a de-
tailed description and an evaluation of our approach.
We conclude this paper with some comparisons with
related approaches.

Outlines of the new Approach
As explained above, input clauses are compressed be-
fore the proof run. The conditions arising from the
compression of clauses are expressed by means of arbi-
trarily AND-OR-connected equations over first-order
terms, called constraints.

If during the proof process a clause with a constraint
is attached to a computation tree with a constraint,
both constraints are instantiated, AND-connected, and
the result is simplified. Since a constraint normal-form
is not required, we use cheap simplification techniques
which, on the one hand, can identify a lot of redundant
or unsatisfiable sub-conditions but which, on the other
hand, need not identify all redundant or unsatisfiable
sub-conditions. The satisfiability test need not be per-
formed after each inference. Since the satisfiability of
a constraint follows from the existence of a solution,
in the satisfiability test only one solution is computed.
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This implies that only one of the simultaneously pro-
cessed computation trees is computed explicitly.

The advantage of our approach over the conven-
tional connection tableau calculus can be seen when
regarding the example of the introduction. If a sat-
isfiability test is applied to the condition (V, W) 
{(al,bl),..., (an, bn)} associated with the computa-
tion tree T, then one solution (i.e., one allowed instan-
tiation for (V, W)) can be found at low costs. After
the failed inference step at the literal -~q(f(W)) all 
represented computation trees are backtracked simul-
taneously.

Compression of Clauses
We use constraints with the following syntax (hence-
forth, we always refer to this definition when using the
denotation constraint):

Definition 1 (Constraint)
1. If t and t’ are terms, then t : t’ is a constraint. We

call t -- t * an elementary constraint.
2. If cl,... ,c~, k _> 0, are constraints, then cl A...Ack

and cl V ... V c~ are constraints. For k _> 2, we call
cl A . . . A ck a conjunctive constraint and cl V . ¯ ̄  V ck
a disjunctive constraint. ,~

If c is a conjunctive constraint Cl A-. ¯ A c~ or a disjunc-
tive constraint ci V-.- Y ck, then Cl,..., Ck are immedi-
ate sub-constraints of c. The notion of a sub-constraint
of a constraint is inductively defined as follows: c it-
self is a sub-constraint of c. If 5 is an immediate sub-
constraint of a constraint c, then ~ is a sub-constraint
of c. If ~ is a sub-constraint of c, then each immediate
sub-constraint of ~ is a sub-constraint of c.

An elementary constraint t = t’ is valid if and only
if t equals t’. A conjunctive constraint cl A ... A ck
is valid if and only if each ci (1 _< i < k) is valid.
A disjunctive constraint Cl Y ... V ck is valid if and
only if there is a valid ci (1 _< i _< k). We denote
the instance of a constraint c under a substitution a
by a(c). If c is a constraint and a is a substitution
such that a(c) is valid, then a is called a solution of
c. A constraint is satisfiable if and only if a solution
of it exists. Constraints cl and c2 are equivalent if and
only if each solution of ci is a solution of c2 and each
solution of c2 is a solution of cl.

For a formal description of the compression of struc-
turally similar clauses, we use the following definitions:

Definition 2 (Generalization, Generalizer)
1. A clause C is a generalization of a set {Ci,..., Cn},

n >_ 1, of clauses if and only if each clause Ci (1 _<
i _< n) is an instance of C. A set of clauses is called
generalizable if and only if there is a generalization
of it.

2. Let C be a generalization of a set S of generalizable
clauses. C is a most specific generalization of S if
and only if, for each generalization C’ of S, there is
a substitution a such that a(C’) = 



3. Let C, CI,..., Cn, n ~_ i, be clauses such that C is
a generalization of the set {Cx,..., C1%}. Let ax,...,
an be substitutions such that, for each i with I < i <
n, Ci = ai(C) and ai = {Xi,1 ~’- ti,l,...,Xi,1%i +-

ti,1%~ } with ni > 0. Then, we call the constraint
1%

V (x ,l = t ,l ^... =
i=1

a generalizer for {C1,... ,C1%} with respect to C.

We regard clauses as structurally similar if and only
if they are generalizable. During the compression of
a set of structurally similar clauses a most specific
generalization of the set and a generalizer for the set
with respect to the most specific generalization are
obtained. The most specific generalization yields the
new clause resulting from the compression, and the
generalizer yields the constraint of the new clause.
For example, q(g(Y, Z)) is a most specific generaliza-
tion of the clause set {q(g(a,a)),q(g(h(X),bx)),...,
q(g(h(X), bin))}, and

(Y = a ̂  z = a) v V (r = h(X) ̂ z = hi)
i=l

is a generalizer for this set with respect to q(g(Y, Z)).
According to the above definition, the generalizer

for a set of structurally similar clauses with respect
to a generalization of the set is always in disjunctive
normal-form, i.e., it is a disjunctive constraint where
each sub-constraint is a conjunction of elementary con-
straints. It can be transformed into an equivalent
constraint with a minimal number of elementary sub-
constraints by means of the commutative and distribu-
tive laws. The above generalizer, for example, can be
transformed into the equivalent constraint

(Y = a ̂  z = a) v (Y = h(x) ̂ V z 
i=l

This transformation either reduces the number of ele-
mentary sub-constraints or leaves it unchanged. The
number of elementary sub-constraints has an influence
on the effort of the constraint simplification and the
satisfiability test (see the next section).

The New Calculi

During the construction of computation trees, con-
straints are handled as follows: If the start clause has a
constraint, then its constraint results in a constraint of
the initial computation tree. If during an inference rule
application a clause with a constraint is attached to a
computation tree with a constraint, the substitution
which is applied to the clause and to the computation
tree is also applied to both constraints. The constraint
of the resulting computation tree results from a con-
junction of the instances of both constraints. If the in-
put computation tree does not have a constraint, then

the instantiated constraint of the input clause yields
the constraint of the resulting computation tree. If
the input clause does not have a constraint, then the
instantiated constraint of the input computation tree
yields the constraint of the resulting computation tree.

For conventional connection tableau calculi, a closed
computation tree, i.e., a computation tree where each
branch contains a pair of complementary literals, rep-
resents a proof. For connection tableau calculi with
disjunctive constraints, however, a proof is represented
by a closed computation tree with a satisfiable con-
straint. As shown in (Ibens 1999), connection tableau
calculi with disjunctive constraints are sound and com-
plete, i.e., a proof can be found in the new calculi if
and only if the input clause set is unsatisfiable.

Constraint Processing

We will now discuss techniques for the simplification
and the satisfiability testing of constraints, and we will
describe their use during the inference process.

Constraint Simplification. Valid or unsatisfiable
sub-constraints can be identified and eliminated in cer-
tain cases.

According to the definition of being valid, valid sub-
constraints of a given constraint can be identified by
an analysis of elementary sub-constraints and a prop-
agation of the results of the analysis. An analogous
propagation technique allows the identification of cer-
tain unsatisfiable sub-constraints: We call a constraint
trivially unsatisfiable if it is either an elementary con-
straint s = t where s and t are not unifiable, or a con-
junctive constraint with a trivially unsatisfiable imme-
diate sub-constraint, or a disjunctive constraint where
all immediate sub-constraints are trivially unsatisfi-
able. Obviously, a trivially unsatisfiable constraint is
unsatisfiable.

In the following cases valid or unsatisfiable sub-
constraints may be eliminated from a given constraint.
Let c be a constraint, let ~ be a sub-constraint of c,
and let d be an immediate sub-constraint of ~. If ~ is
valid and ~ is not valid, we can obtain a constraint c’
which is equivalent to c by the elimination of ~ from c.
Analogously, if ~ is trivially unsatisfiable and ~ is not
trivially unsatisfiable, we can obtain a constraint d
which is equivalent to c by the elimination of d from c.
Since the elimination of valid or trivially unsatisfiable
sub-constraints of a constraint can significantly reduce
the effort of testing its satisfiability, we remove valid
or trivially unsatisfiable sub-constraints from the con-
straint associated with the current computation tree
after each inference step.

Satisfiability Test. The satisfiability of a constraint
follows from the existence of a solution of it. There-
fore, only one solution of the given constraint is com-
puted in the satisfiability test. The computation of a
solution is based on the enumeration of solutions of el-
ementary sub-constraints by means of backtracking --
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until their composition is a solution of the whole con-
straint. A detailed discussion of different algorithms
for the satisfiability test can be found in (Ibens 1999).

Obviously, an unsatisfiable constraint cannot be-
come satisfiable by adding further sub-constraints.
Therefore, inferences to a computation tree with an
unsatisfiable constraint are not necessary; backtrack-
ing of inference steps can immediately be performed.
However, due to the imposed effort, the satisfiability
testing of constraints should be subject to accurate
considerations. If after each inference the satisfiability
of the constraint associated with the current compu-
tation tree is tested, then its possible unsatisfiability
is immediately recognized. However, when performing
the test after each inference, the accumulated effort of
the satisfiability testing may be too high (in particular
if most of the tested constraints are satisfiable). An-
other strategy may be to test the satisfiability of the
constraint associated with a computation tree not until
the computation tree is closed. In this case, however, a
high number of useless inference steps may be applied
to computation trees with unsatisfiable constraints.

In our approach, a satisfiability test is always applied
after inferences involving unit clauses. These are situ-
ations where a certain sub-tree of the current compu-
tation tree has become closed. After inferences which
involve a non-unit clause with a constraint a weak sat-
isfiability test is applied only (see below).

Weak Satisfiability Test. If in an inference step a
clause with a constraint is attached to a computation
tree with a constraint, then according to the above-
described inference rules the conjunction of both in-
stantiated constraints yields the constraint of the re-
sulting computation tree. Therefore, the constraint
associated with a computation tree is in general a con-
junctive constraint.

A weak satisfiability test of a conjunctive constraint
can be performed if only one immediate sub-constraint
is tested. If the tested immediate sub-constraint is un-
satisfiable, then the whole constraint is unsatisfiable.
Otherwise, neither the satisfiability nor the unsatisfia-
bility of the whole constraint can be derived. In our ap-
proach, during the weak satisfiabiUty test always that
immediate sub-constraint is tested which has been at-
tached in the recent inference step.

Evaluation
We have integrated our approach into the automated
connection tableau prover SETHI~O (Letz et al. 1992;
Ibens & Letz 1997; Moser et al. 1997). Thus we ob-
tained the system C-SETHEO. In the following exper-
iments, the performance of SETHEO and C-SETHEO is
compared when run on different problems from ver-
sion 2.1.0 of the benchmark library TPTP (Sutcliffe,
Suttner, & Yemenis 1994) using a SUN Ultra 1 work-
station (143 MHZ). The problems of the TPTP are
formulated in first-order clause logic. When given an
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Domain Runtime SETHEO C-SETHEO

< 10 sec 4 18
Field _< 60 sec 11 26

< 150 sec 2O 26m

_< 10 sec 0 1
Planning <_ 60sec 1 5

< 150 sec 3 6
< 10 sec 0 4

Geometry < 60 sec 2 9
< 150 sec 5 10

I

Table I: Numbers of solved non-trivial problems.

input problem, C-SETHEO first replaces each set of
structurally similar input clauses with an equivalent
pair consisting of a clause and a constraint. Then, it
processes the result of this transformation. SETHEO
tries to solve the original input problem directly.

We investigate problems from the field, planning
and geometry domains. The TPTP library contains
281 field problems, 30 planning problems, and 165 ge-
ometry problems. We consider a problem as triv-
ial if it can be solved by SETHEO as well as by C-
SETHEO in less than 10 seconds. Thus, 55 of the
field problems, 23 of the planning problems, and 50
of the geometry problems are considered trivial. Ta-
ble 1 shows how many of the remaining problems
can be solved within 10, 60, or 150 seconds. These
time intervals are important since in applications like
the software component retrieval (Dahn et al. 1997;
Fischer, Schumann, & Snelting 1998; Baar, Fischer, &
Fuchs 1999) answer times of 1 or 2 minutes are ac-
cepted in general.

For each of the tested domains and in each investi-
gated time interval, C-SETHEO solves more problems
than SETHEO. C-SETHEO even solves in 10 seconds
nearly as many field or geometry problems as SETHEO
in 150 seconds. That is, the integration of disjunctive
constraints has achieved an important speed-up.

Related Work

Data-Base Unification. The data-base unification
(Bibel et al. 1998) has been developed as an improve-
ment of the connection method (Bibel 1993) which 
closely related to connection tableau calculi. In this
approach, input clauses are compressed like in our ap-
proach. The arising conditions are expressed by spe-
cialized data-structures for the representation of sub-
stitutions, so-called abstraction trees (Ohlbach 1990).

If a clause with a condition is attached to a compu-
tation tree with a condition, the respective abstraction
trees are merged by means of the operation DB-join
(Bibel 1993). Since abstraction trees explicitly rep-
resent the allowed instantiations of the variables oc-
curring in a condition, all redundant or unsatisfiable
parts of the resulting condition have to be eliminated.
This means that all satisfiable sub-conditions are de-



termined. Thus, in almost each inference the data-base
unification determines all ordinary computation trees
which are represented by the current computation tree
with its condition. In contrast to this, only one repre-
sented computation tree is determined in the satisfia-
bility test of our approach. Therefore, in our approach
considerably less computation trees are in general in-
vestigated during the search for a proof.

Generalized Propagation. Generalized propaga-
tion (Provost & Wallace 1992) integrates propagation
techniques which have originally been developed for
solving constraint satisfaction problems (Mackworth
1977) into the constraint logic programming scheme
CLP(X) (Jaffar & Lassez 1987). The propagation 
a literal is performed during the proof search, and it
yields that information which have all answers to it in
common. When given the computation tree

-,p(x) -,q(X)
and the unit clauses p(a),p(g(b)),p(f(a)),q(f(a)),
q(/(b)), for example, then (X ~ /(a)} and ~X 
/(b)} are the possible answers to the literal -~q(X).
The common information of the computed answers is
the fact that the variable X has to be instantiated with
the term f(Y) where Y is a new variable. This infor-
mation avoids that at the literal p(X) inferences with
the input clauses p(a) or p(g(b)) are tried.

An implementation of the concept resulted in the
system PROPIA. In this system, propagation is only
performed at certain propagation literals which have
to be identified in the input clauses by the user. Since
the effort and the benefits arising from the selection
of a propagation literal can strongly differ for the lit-
erals of the input clauses, their determination requires
the familiarity of the user with the behavior of the
propagation process as well as with the formulation
of the input problem. In contrast, our system works
fully automatically. Another disadvantage of general-
ized propagation is that the propagation of a literal
requires the computation of all answers to it in gen-
eral. Therefore, it suffers from the repeated computa-
tion of sets of represented computation trees like the
data-base unification.

Conclusion
We have presented an approach to a simultaneous
search in connection tableau calculi. This simultaneous
search is achieved by the compression of structurally
similar input clauses. The compression is performed
by arbitrarily AND-OR-connected equations over first-
order terms, called constraints. As a consequence of
this compression a satisfiability test of the constraints
associated with computation trees becomes necessary.
In order not to move the search space which has been
saved by the simultaneous search into the satisfiability
test, elaborate strategies for the simplification and the

satisfiability testing of our constraints have been de-
veloped. An experimental evaluation shows that our
approach increases the performance of the connection
tableau prover SETHEO.

We have also discussed previous approaches aiming
at a simultaneous search in connection-tableau-like cal-
culi. As we have discussed, our new approach over-
comes the deficiencies of the previous approaches and
appears to be better suited in practice.
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