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Abstract
Most research related to automated analysis of music
presupposes human partitioning of the input into segments
corresponding to significant harmonic or melodic chunks.
In this paper, we describe HarmAn, a system that partitions
tonal music into harmonically significant segments
corresponding to single chords and labels these segments
with the proper chord labels. Segment labels are determined
through template matching in the space of pitch class with
conflict resolution between equally scoring templates
resolved through simple preference roles. Our system’s
results are compared with published results.

Introduction

The analysis of music by computer is a long-standing
theme of AI research, as listening to music is clearly an
intelligent activity. Listening for the purpose of analyzing
the technical aspects of music requires the skills of an
expert. One fundamental task in analyzing music,
regardless of the approach to be followed, requires
breaking the music into the proper "segments," which
support later processing. This is analogous to the
computer-vision task of finding lines in an image. We are
concerned with developing an algorithm for segmentation
that makes minimal commitments to (musical) context,
thus gaining flexibility and performance.

Analysis of the harmony is central to the technical
understanding of any piece of tonal music. In order to label
the harmonies in a piece, the analyst must find those places
in the music where the harmony changes, and label the
resulting segments with the proper chord names. Figure 1
shows a measure of music partitioned into two labeled
segments.

In the case of block chords, where notes start and end
simultaneously, the harmonic changes are obvious. Music,
however, is not this simple: chords are often arpeggiated
(spread out over time), incompletely stated, and
interspersed with myriad non-harmonic tones (often stating
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the melody), in forms such as trills and appoggiaturas. All
of these things confound finding the correct changes in the
harmony.

A flat E flat
major dom 7

Figure 1: Beethoven, Sonata Pathetique, Op 13, Second
Movement, measure 1

Let us introduce some terminology. The harmony of a
piece may change each time a note begins or ends. A
partition point is where the set of pitches currently
sounding in the music changes by the starting or ending of
one or more notes. P.,, is the ordered set of all partition
points for a piece of music. A segment is the interval
between any two partition points. A minimal segment is the
interval between two sequential partition points. Figure 2
illustrates these concepts.

A partitioning of a piece is a subset of Pa, containing at
a minimum the first and last elements of P~,. A binary
number uniquely labels any partitioning of a piece of
music. The ith bit of the number is "1" if the ith partition
point in P,~ is in the partitioning, else the bit is "0". The
number of partition points in Figure 2, denoted IP ,,I, is
nine.

Figure 1 shows a partitioning of the same music into two
segments labeled "A flat major" and "E flat dom 7,"
respectively. This partitioning is represented by the nine
digit number" 100010001 ."

Since a partitioning is uniquely labeled with a binary
number of length [P,[ and the initial and final bits of this
number are always "l", there are 2~*’t2 ways to partition
any piece of music. Clearly, exhaustive exploration of
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possible partitionings is intractable for all but the smallest
pieces. Thus, any system that performs harmonic analysis
must apply a heuristic to reduce the size of the search
problem.

Minimal Partition
segment point Segment

I

Pl P~ P3 P4 P~ P6 P7 Ps P9

Figure 2: Beethoven, Sonata Pathetique, Op 13, Second
Movement, measure 1

Previous research in the area of automated harmonic
analysis of music (Winograd 1968; Smoliar 1980; Maxwell
1992; Widmer 1992; Smaill, Wiggins et al. 1993), with the
notable exception of recent work by Temperley and Sleator
(Temperley and Sleator 1999), has either avoided the issue
of partitioning by taking partitioned input, or has been
unclear about how partitioning is done.

Finding a good partitioning requires a metric for
determining the "goodness" of a partitioning. We do this
by generating labels and scores for the segments defined
by a particular partitioning. The score of a partitioning is
given by the sum of its segments’ scores. Partitionings can
then be directly compared and the best one selected.

We describe a concise template matching algorithm,
related to the work of both Ulrich (Ulrich 1977) and
Wakefield (Wakefield 1999; Wakefield and Pardo 1999)
that quickly labels a partitioning’s segments and generates
a score for the partitioning. Our approach decouples
labeling a single partitioning from finding the best one.
This allows the use of well-known search methods to find
a good partitioning. The combination of template matching
and our method for search through the space of
partitionings produces excellent results. It also yields an
approach that is much simpler and easier to extend than
previously reported approaches.

Templates for Segment Labeling

The music we are concerned with is based on the pitch
classes of the chromatic scale. The chromatic scale and its
12 pitch classes form the basic set of items used to
generate the structures associated with most Western
music. The common labels for the pitch classes, along with
their numeric equivalents, are given in Table I.

Using the integer representations of the pitch classes and
modulo 12 arithmetic, structures such as chords and scales,
can be represented as n-tuples representing positive
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displacements in the space of pitch classes in relation to a
root pitch class. These tuples form templates useful for
describing musical structures and are related to those used
in atonal set theory (Forte 1973), the chromagram
(Wakefield 1999; Wakefield and Pardo 1999), and the
work of Ulrich (Ulrich 1977).

Table 1: Pitch Class Number and Name
Correspondences

:::~ "~vi!~ " :~::::~ ~!:/:

~. ~’~

-."..-..i: ~:.:’ :.~,~Z:. ¯ ~-~ -~’~ I
1 ~-~ 3 ~ 5 ~ 7 ::ii:~ 9 ~ 11I

An example of the template representations is the
following. Given a root (pitch) class, r, the tuple <0,4,7>
represents the pitch class relations to r embodied in a
major triad. Letting r = 7, this results in a chord given by
modl2(r+0, r+4, r+7) = {7,11,2}. Looking at Table 1, it 
easy to verify that this corresponds to { G, B, D }, the pitch
classes in the G major triad.

Segment Labeling and Scoring
Our method for labeling a segment, embodied in a
software system named HarmAn, currently uses the
templates described in Table 2 to find the best-matching
label for the set of notes in that segment. Given a particular
segment, the score for a particular template and root
combination is calculated using the following steps.

1. Determine the weight of each note by counting the
number of minimal segments in which the note is
present between the start and end of the current segment.

2. If a note matches a template element, add its weight to
the score.

3. If a note does not match any template element,
subtract its weight from the score.

4. Subtract one point for each template element not
matched by any note.

The first step requires some explanation. Consider the
segment from p~ to pj in Figure 2. This segment is
comprised of two minimal segments. The "C" at the top of
the staff is a quarter note so it is held from p, to ps. It spans
both minimal segments in <p~, p~> so it has a weight of
two. The "A fiat" on the top line of the staff holds for only
a single minimal segment and has a weight of one.

All combinations of template and root class are scored in
order to determine the best (i.e., highest scoring) label for 
particular segment. The score of the best label is then used
as the score of the segment. Ties between the scores
generated for two templates are resolved through the
application of the following preference rules.



Prefer major triad to minor triad.
Prefer minor triad to major-minor 7%

Prefer major-minor 7~h to diminished triad.

Prefer diminished triad to augmented triad.

Prefer lower pitch-class numbers.

Chord-quality preferences take precedence over pitch-
class number preferences.

Preferences are transitive; for example, major triads are
preferred to augmented triads.

Table 2: Common Tonal Structure Representations

Name of tonal Typical written Template
structure notation, given a representation

"C" root note

major triad C, C Maj, C:I <0, 4, 7>

minor triad C rain, c:I <0, 3, 7>

ausmented triad C+, C aug, c:l+ <0, 4, 8>

diminished triad C dim, c:i° <0, 3, 6>

major-minor 7th C7, C dom 7, F:V7 <0, 4, 7, 10>
chord

Note that nothing in this approach limits templates to
triadic structures. Pentatonic scales, constructions based on
fourths or any other structure can be identified simply by
introducing a template for the structure in question, and
establishing a rule for resolving ties between the new
template and existing ones. Thus, extending the system to
new tonal structures is easy, and presents no scaling
problems. We believe this is also true for atonal structures.

The simplicity and generality of our segment labeling
approach is its great strength. We have separated an
approach to finding basic structural elements of the
harmony from style-specific issues, such as voice-leading
rules and rhythmic practices. These may be added as
ancillary processing to improve results on difficult cases.

Finding a Good Partitioning

For HarmAn, a performance of a piece of music, M, is
represented by a standard MIDI file. The system reads note
events from the file and generates the set of all partition
points, P,~ and a set of associated segments, S,, containing
all minimal segments.

Px~ is the best partitioning found so far. S~ood is the set of
segments defined by P~,~. Once P~t is created, P~,~ is set
equal to P~. HarmAn then evaluates each partition point
from P2 through PleaJ~ to determine whether P~ could be
improved by removing the partition point. Figure 3
describes this in greater detail.

Note that HarmAn has a preference for longer segments
over shorter ones. If the score of the union of two adjacent
segments is equal to or higher than the sum of their
individual scores, the partition point separating them, Pl, is
removed from P,~.

|.

2.
3.
4.
5.
6.
7.
8.
9.
10.
I1.
12.
13.
14.
15.
16.END

Pgood := Pall
Sgood := Sm
i :=2
score<pi-1, pi> := LabelAndScoreSegment (pi-1, pi)
WHILE i < IPgoodI

score<pi, pi+l> := LabelAndScoreSegment (pi, pi+l)
score<pi- 1, pi+ 1 >:= LabelAndSeoreSegment (pi- l,pi+ 1)
IF score<pi-l, pi+l> > (score<pi-l, pi> + score<pi,pi+l>)

remove pi from Pgood
remove <pi, pi+l> from Sgood
remove <pi- 1, pi> from Sgood
add <pi-l, pi+l> to Sgood

ELSE
i:=i +1

END

Figure 3: Finding a good partitioning

Example: Beethoven, Sonata Pathetique,
Second Movement, Measure 1

Figure 2 shows the first measure of the second movement
of Beethoven’s Sonata Pathetique with its partition points
labeled. Consider a harmonic analysis of this measure. The
initial partitioning generated by HarmAn contains all
partition points and is represented by "111111111."

Table 3 shows the label and score for every segment
considered by HarmAn in its analysis of the first measure
of the Beethoven example. The vertical key gives the
starting partition point for each segment. The horizontal
key gives the ending partition point for each segment.
Table entries marked "?" show segments not scored by the
system.

HarmAn considers partition points in the order in which
they occur in the music. In the first round of comparison,
the partitioning lll111111 (P,u) is compared 
partitioning 101111111 (P~-P2)- This is done 
comparing the scores of segments <Pt, P2>, < Pz, P~> and
<pt, p~>. The score of <p~, p~> is six, and the sum of the
scores for <p~, p2> and < P2, Ps> is five. Partition point P2 is
thus removed from P~ (i.e., its bit is set to 0).

In Round 2, HarmAn compares partitioning 101111111
with partitioning 100111111 by comparing segments
<p~. p~>, <p.,, p,> and <p~, p~>. The unified segment score
is higher than sum of the scores of the two component
segments so p, is discarded from P,~.

In Round 3, HarmAn compares <P~, P,> + <P4, Ps>
against <pt, p~>. The values are equal, but the system
chooses to remove the partition point due to its preference
for long segments.
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Round 4 finds HarmAn comparing partitionings
100011111 and 10000111 via <p~, p,.>, <Ps, /7,> and
<p,. p,>. The sum of the scores of <pp ps> and <pj, p,> is
15, while the score of the segment <p~, p6> is only nine.
Removing the partition point P6 reduces the score, so the
partition point remains, and the system moves on to the
next round.

Table 3: Segment Labels and Scores

pl

Ps

p2 p3 p4 ps pe pr p8 p9
A fiat A flat A fiat ~’f~ A fiat ? ? ?
maj maj maj ~1~._ maj
2p~ 6p~ 9p~ ~1~ 9p~

Af~ ? ? ? ? ? ?
m~
3 p~

A fiat
mal
2pts

? ? ? ? ?

Aflat
maj
3pts

? ? ? ?

G E fiat E flat
dim dora7 dom7
3pts 6pts 9pts

E fiat ? ?
dora 7
2 pts

G dim ?
3p~

E fiat
dom7
2pts

In the remaining rounds, HarmAn considers the partition
points P6 through Pr In each ease, the unified segment is
chosen over the two separate segments. Thus, P6 through Pa
are removed from the final partitioning.

Since the initial and final partition points are always in
every partitioning, the system is done once it has
considered points P2 through Ps, leaving partitioning
100010001, with the first segment labeled as "A flat
major" and the second segment labeled "E flat dominant."
Figure 1 shows this partitioning and labeling.

Evaluation of HarmAn

From Table 3, it is clear HarmAn scored only 21P,~11-3 out
of roughly le.,12/2 possible segments. Similarly, the number
of partitionings considered by the system is equal to IP,,I-1
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(two partitionings are compared for partition point Pz and
one new partitioning is considered for each subsequent
partition point up through Ple,,i-,)" This number is much
smaller than the full 2v’~n-" possible partitionings.

We justify this "left-to-right" heuristic in the following
way. Music unfolds in time from start to finish. A
composer who wishes to write pieces that are decipherable
by the listener must create structures that can be
understood in a start-to-finish way with limited
backtracking to previously heard passages. The
expectation for what comes next is determined by what has
just been heard, and it is reasonable to assume that the set
of likely partitionings under consideration by a human is
greatly constrained by what has already transpired in the
music. Thus, it is likely that much music is written so that
one can partition it in a start-to-finish way with no
backtracking.

To test this assumption, HarmAn was altered to search
through the partition points in start-to-finish order, reverse
order and in random order. The different search orders
were then compared on a test set of Bach Inventions. As
expected, start-to-finish searching produced the best
results.

In order to compare our results to existing work on
automated analysis of harmony, we analyzed a set of
pieces by Bach, Beethoven, and Schubert used in other
papers. In all cases, HarmAn performed analysis that was
considered reasonable by human experts and was
comparable to or better than that of existing systems.
Details of the experiments performed with HarmAn can be
found at http://musen.engin.umich.edu/. What follows is a
comparison of HarmAn’s analysis of an example passage
from Beethoven’s Sonata Pathetique to the analysis done
by what we consider to be one of the best current systems.

Comparison to Temperley and Sleator

Temperley and Sleator (Temperley and Sleator 1999) have
created a system that does beat finding in a manner
influenced by Lerdahl and Jackendoff (Lerdahl and
Jackendoff 1983). Beats are then used to help determine
the partitioning of the piece into time spans, which are
labeled as likely chords. A root is then chosen for each
segment. Roots are chosen to prefer giving the same root
name to successive chords if possible, and to prefer root
names related by a fifth, otherwise. Their system is limited
to labeling the root of each segment rather than providing
the full chordal spelling. The full history of preceding root
names is used, along with the intervals present in the
current segment, to determine the choice of the root name
of each segment. The system is described as a set of
preference rules, and is strongly tied to an explicit model
of functional tonal harmony in its approach to analysis.

Figure 4 shows the results of analysis of the first eight
measures of the second movement of Beethoven’s Sonata
Pathetique. The root names generated by Temperley and
Sleator are on the line labeled "T&S" (Temperley and
Sleator only reported the analysis of the first five measures
in their paper). The chordal names returned by HarmAn



are on the line labeled "HarmAn." As can be seen from the
figure, HarmAn successfully captured the correct chord
roots and qualities in this passage, with the possible
exception of the first half of the final measure.

The Temperley and Sleator system did about as well as
HarmAn on root finding in this example, although
HarmAn also correctly identifies chord quality. Both
systems agree on root spellings through the first four
measures, diverging in the fifth measure. Their system
finds four roots in this measure, namely "G," "B fiat," "E
flat," and "A flat." HarmAn reports only two. Interestingly,
HarmAn gets closer to capturing the actual harmonic
rhythm of this measure even though it does not explicitly
represent rhythm. HarmAn also correctly labels measures
six seven.

,’
.o .’’~iFb’irU~l
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i__

F
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EI~ F minBi~7
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Figure 4 : Beethoven, Sonata Pathetique, Op 13, Second
Movement, measures 1 through 8

Measure eight is a possible problem. The bass notes on the
first two beats of the measure change to "A flat," while the
upper voices continue to spell out an "E flat 7" chord.
HarmAn’s weighting system interprets this as a
continuation of the "E flat 7" from the previous measure,
with the "A fiats" considered as non-harmonic notes.
While this is an acceptable solution, a music theorist might
treat the whole final measure as a statement of "A fiat"
with the upper voices functioning as a suspension of the
previous harmony, which is resolved in the third beat of
the measure. We argue that this interpretation involves
semantic knowledge of a particular style (a context), and 
thus outside the scope of what our system is designed to
address.

Summary
The work described in this paper provides a set of concise
and efficient algorithms for context-free harmonic analysis
of tonal music and provides a good first approximation of
the harmonic structures in a typical piece of tonal music.
HarmAn does this using a relative small set of rules, which
do not require an understanding of the tonal context, nor
any metrical information to perform the analysis. The
results achieved by this system compare well to those

achieved by much more complex systems reported in the
literature. Furthermore, HarmAn is easily extendable to
new harmonic structures.

Forte, A. 1973. The
University Press.
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