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Abstract

The current framework for constructing intelli-
gent tutoring systems (ITS) is to use psycholog-
ical/pedagogical theories of learning, and encode
this knowledge into the tutor. However, this ap-
proach is both expensive and not sufficiently flex-
ible to support reasoning that some system de-
signers would like intelligent tutors to do. There-
fore, we propose using machine learning to auto-
matically derive models of student performance.
Data are gathered from students using the tu-
tor. These data can come from either the cur-
rent student or from previous users of the tutor.
We have constructed a set of machine learning
agents that learn how to predict "high-level" stu-
dent actions, and use this knowledge to learn how
to teach students to fit a particular learning goal.
We discuss other related work at using machine
learning to construct models within ITS. By com-
bining several different systems, nearly all of an
ITS’s decision-making could be performed by ma-
chine learner derived models. An open question is
the complexity of combining these diverse archi-
tectures into a single system¯

Introduction
This paper discusses an alternate approach to con-
structing intelligent tutoring systems (ITS). Typically,
such systems are built using cognitive and pedagogical
models to guide the tutor’s reasoning. Our concern is
the cost of constructing such models as well as their ac-
curacy. We discuss using machine learning to automate
much of this process. First, we will describe our results
at using machine learning to make teaching decisions.
Second, we will examine related work that addresses
other components of an ITS. We will then discuss how
to merge these different systems together to construct
an architecture for ITS construction that is data-driven
and uses little a priori reasoning.

Classical design
The intelligence in intelligent tutors has been largely
done by implementing various theories of skill acqui-
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Figure 1: High-level view of ITS components.

sition and teaching. The "cognitive tutors" (Anderson
1993) are perhaps the best known example of this. 
detailed cognitive model of how people perform a task
is constructed, and the tutor’s goal is to determine how
the student has deviated from this model. A hard prob-
lem is finding some method of mapping a student’s in-
teractions with the tutor to this mental state.

Figure 1 provides an overview of a fairly typical ITS
architecture. Several types of knowledge engineering
(KE) must be performed, as it is necessary to spec-
ify the material to be taught, potential misconceptions,
how the student will learn the material, and a set of
pedagogical rules for teaching. Once this is complete,
some method of reasoning with the data collected is
needed. This results in a complex design that is very
knowledge intensive.

Motivation

One problem with using cognitive/pedagogical models
to construct ITS is the expense. It is a complex un-
dertaking to build a detailed cognitive model of a task,
and mapping overt user actions to this internal men-
tal model is also non-trivial. If it were possible for
ITS to be deployed widely and used by many students,
this high up-front cost might be acceptable, as the per-
student cost would be low. However, for a variety of
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reasons, this has not occurred. One reason is institu-
tional acceptance, which is a major factor blocking the
deployment of ITS(Bloom 1996).

Few organizations are willing to accept teaching soft-
ware that cannot be modified. Given the expense in
changing how an ITS performs, overcoming this prob-
lem is difficult. We have started to see broader ac-
ceptance of ITS(e.g. (Koedinger et al. 1997)), largely
through a cooperative effort with educators to meet the
latest educational standard. Although, one is left to
wonder what will happen when the latest "hot" educa-
tional philosophy changes. There is no strong consensus
on what is useful for students to learn. Is collabora-
tive/cooperative learning going to be considered useful
in ten years? Is memorization ever appropriate? One
wonders how models that prescribe how to teach can be
accurate when the goals they must meet are not stable.

In addition to expense and lack of flexibility, it is un-
clear how well models developed for the classroom ap-
ply to one-on-one computer instruction. Humans and
computers have very different communication strength
(for example, gesturing and voice intonation, and three-
dimensional animation, respectively). Methods that
appear obvious to the ITS community, such as student
modeling, although useful, are frequently not used by
human tutors(Ur & VanLehn 1995).

Furthermore, there has been little work at evaluating
the accuracy or effectiveness of these components. If
the models are inaccurate, or only a minimal amount
of accuracy is necessary for the tutor to act effectively,
the work is going for naught.

With computer hardware in classrooms becoming ca-
pable of running tutors that were previously research
prototypes, large scale trials become possible. With the
advent of network-based tutors1 , it is possible to gather
a large amount of information from human trials with
tutors. Previously, trials were small in nature, and col-
lecting data from remote locations was difficult. With
the possibility of automatically uploading the results of
students using the tutor to a central repository, there
are significantly more data with which to reason.

Ideally, such data could be used to direct the ITS’s
teaching and student modeling. Unfortunately, a collec-
tion of data is fairly useless without a model/theory to
provide organization. Thus, some means of construct-
ing a model must be found. Fortunately, machine learn-
ing is well-suited for this task.

Machine learning

Machine learning allows computers to reason and make
predictions about situations they have not encountered
previously. One such application is a pattern matcher
or a classifier. The machine learner takes a set of in-
puts describing the object, and tries to determine to
which category the objects belongs. This can be ap-

tTutors operating over a network, possibly the internet.
Such a system may be web-based, or may simply use sockets
to send information back to a central server.

Teaching pal

.............................. :_-_ ..................

Figure 2: Overview of ADVISOR architecture.

plied, for example, to stereotypical student models(Kay
1994). A slightly more general view is to think of 
machine learner as an automatic model generator. A
linear regression is an example of this concept: the goal
is to determine a function that best predicts the en-
vironment. A possible use of such a machine learner
could be to automatically derive the equations used by
Shute(Shute 1995) for updating a student’s knowledge.

Many machine learning algorithms are robust to noise
in the data, and construct models of a domain with a
varying degree of human readability. This bring up an
interesting point: is it acceptable to construct a "black
box" model for use in an ITS? For a cognitive scientist,
the answer would be no. A computer scientist, or some-
one trying to build an ITS cheaply would probably not
care as much.

Our current work
To address issues of cost and accuracy of models used
in an ITS, we have constructed a set of machine learn-
ing agents that learns how to teach students. Figure 2
provides an overview of this process. First, students
using our tutor, named AnimalWatch, are observed,
and these data provided to a learning agent that mod-
els student behavior. This Population Student Model
(PSM)(Beck & Woolf 2000) is responsible for taking 
context, and predicting how students will act in this
situation.

The second component is the pedagogical agent (PA),
that is given a high-level learning goal and the PSM. An
example of such a high-level goal is "Students should
make precisely 1 mistake per problem." The PA’s task
is to experiment with the PSM and find a teaching pol-
icy that will meet the teaching goal provided.

We gathered approximately 11,000 training instances
from students using our AnimalWatch(Beai et al. 2000)
tutor. Whenever the student entered a response, the
system logged the correctness of the response, and the
amount of time the student required. In addition, the
system recorded the current "state" when the student
attempted this response. This state is composed of 48
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features in four main areas:
1. Student: The student’s level of prior proficiency and

level of cognitive development(Arroyo et al. 2000)

2. Topic: How hard the current topic is and the type
of operand/operators.

3. Problem: How complex is the current prob-
lem(Beck, Stern, & Woolf 1997).

4. Context: Describes the student’s current efforts at
answering this question, and hints he has seen.

High-level student modeling

Most student models are concerned with representing
the student’s level of ability on distinct portions of the
domain. Although useful, it is not always obvious how
to map this low-level knowledge to higher level teaching
actions. Given that the main purpose of student models
for intelligent tutors is to support such decision-making,
this is an odd situation.

To overcome this difficulty, we have implemented
a machine learning (ML) architecture that reasons 
a coarser grain size. We are not interested in low-
level cognitive information, rather, we want something
that can directly apply to the tutor’s decision-making.
Specifically, the agent learns to predict the probability
the student’s next response will be correct, and how
long he will take to generate that response. Our goal is
to find a method for automatically constructing accu-
rate models of high-level student behavior.

We have applied several machine learning algo-
rithms to attempt to construct a model to predict
time/correctness of student response. Our current ap-
proach is to use linear regression. It is unlikely this will
be our final choice, but classifiers (e.g. naive Bayesian
classifiers) require discrete data. Discretizing all of our
continuous variables would introduce a loss of accuracy.
Numerical techniques tend to require parameter setting
(e.g. a, or stepsize) and significant time to learn-and
in the end provide no guarantees of finding a good so-
lution. With linear regression it is possible to quickly
consider different models and sets of features.

For predicting the amount of time a student will re-
quire to generate a response, our model’s predictions
have a correlation of 0.619 (train with half of dataset,
test with the other half) with the actual amount of time
students required to generate a response. For time data,
accounting for 38% of the variance is fairly impressive.
The model had mixed results at predicting student ac-
curacy. The correlation was only 0.243, but as can be
seen in Figure 3, this is somewhat misleading. On aver-
age the model had high performance, but for individual
cases it may mispredict. In other words, the bias of the
learning agent is fairly small, but the variance in its
predictions is large. Depending on the use of the agent
this may or may not be acceptable.

One benefit of using ML is the ability to reason about
phenomena that are much closer to the level at which
we wish to make teaching decisions. If we are consider-
ing presenting a particular hint in a certain situation,
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Figure 3: Accuracy of predicting student responses.

knowing how the student will react (in terms of time re-
quired to respond and probable accuracy of response)
is more useful than knowing his ability on the skill. A
second benefit is that we are able to include types of
data not normally found in an ITS. For instance, we
do not have a good theory for how level of cognitive
development should impact hint selection. How then
should such data be added to the model? Prior re-
search has come across this same difficulty(Shute 1995;
Beck, Stern, & Woolf 1997). By automating model con-
struction, we bypass this issue entirely.

Also, our model of high-level performance is exe-
cutable. Both previous mistakes and time spent on
the problem are part of the context features maintained
about a problem. Therefore, the model can predict the
student’s probability of a correct answer and expected
time, update the context features appropriately, and
continue making prediction of the student’s efforts on
this problem. This continues until the model predicts
the student will answer the question correctly.

Teaching policies

The pedagogical agent (PA) uses the simulation of the
student as described by the PSM, and experiments with
different teaching actions/strategies to achieve an exter-
nally provided teaching goal.

We have implemented the pedagogical agent using re-
inforcement learning (RL)(Sutton & Barto 1998). 
inforcement learning uses a model of the environment
(the Population Student Model), and a reward function
(the pedagogical goal the agent is trying to achieve).
This architecture of using a simulation is similar to
that used in other complex RL tasks such as TD-
gammon(Tesauro 1995) and elevator dispatching(Crites
& Barto 1998). For our RL mechanism, we decided to
use temporal-difference (TD) learning(Sutton & Barto
1998). Specifically, TD(0) with state-value learning.

We have constructed an RL agent whose goal is min-
imizing the amount of time students spend per prob-
lem. Specifically, when the (simulated) student solved 
problem, the RL agent was given a reward inversely pro-
portional to the amount of time the student required to



Figure 4: Adding ADVISOR into ITS architecture.

solve the problem. By attempting a variety of teaching
actions with the simulated student, the PA was able to
determine under which circumstances teaching actions
resulted in students finishing problems quickly.

The trained PA was tested in an elementary school
with 120 sixth-graders (~ 11 years old). One group 
students (the control) used the classical AnimalWatch
tutor. A second group of students (the experimental
group) used a tutor that reasoned with the machine
learning architecture described here. Students in the
experimental group required 27.7 seconds to solve a
problem, while students in the control group required
an average of 39.7 seconds to solve a problem. This
difference is significant at P~ 10-23 (2-tailed t-test).

Revising the architecture
We will now consider how to replace much or all of the
theory driven reasoning in an ITS by data-driven, ma-
chine learning methods. Figure 4 provides an overview
of how ADVISOR fits into a traditional ITS architec-
ture. Some of the reasoning and knowledge engineering
has been replaced with ML derived models. However,
much of the knowledge engineering and some of the rea-
soning are still being done with traditional mechanisms.

We will now consider other instances where compo-
nents of an ITS’s reasoning have been replaced by ma-
chine learning, and consider the possibility of integrat-
ing these attempts into one system.

Reasoning performed by machine learning
In order to automate (most of) the remaining reason-
ing in an ITS, some means of listing misconceptions,
enumerating domain skills, and mapping over student
actions to internal mental states are needed.

Teaching policies NeTutor (Quafafou, Mekaouche,
& Nwana 1995) has a learning component that maps
features of the teaching action (interactivity level, type
of presentation, etc.) to expected amounts of the learn-
ing. The system uses this knowledge to select a teach-

ing activity that will (should) cause the student to learn
the most. Rough set theory is used to control the list of
possible teaching rules. One set contains the "certain"
rules, while another contains "possible" rules.

An interesting component of this system is the use
of "views". These are ways of partitioning the sys-
tem’s data into smaller, easier to understand compo-
nents. For example, one view may contain features such
as the topic being learned, and whether the student is
solving a problem or reading some text. A second view
may contain information such as what strategy is being
used to present the information, the style of presenta-
tion, etc. This can be useful if humans are involved
with the decision making, but is less beneficial if the
machine is to perform all of the learning on its own.

It is interesting to note that this system’s learning
was done on-line while being used by an individual.
This is a hard problem than our approach of first learn-
ing about a population of users offline.

Misconception detection/construction Prior re-
search(Burton 1982) demonstrated that significant
work is needed to explicitly enumerate all possible
bugs in the student’s knowledge. The ASSERT sys-
tem (Baffes & Mooney 1996) uses theory refinement 
build its model of student misconceptions. The sys-
tem observes when students obtain an incorrect result,
and modifies a correct rule base to be consistent with
the student’s behavior. Thus a runnable model of the
student’s behavior is maintained. This is a powerful
technique, as it does not require bug libraries to be
constructed ahead of time.

Furthermore, ASSERT could automatically modify
teaching examples to demonstrate what was wrong with
student misconceptions. Typically, a specific remedia-
tion lesson must be created for each misconception the
tutor can detect. By automatically creating remedi-
ation, and having an open-ended set of possible mis-
conceptions, ASSERT achieves very powerful teaching
capabilities with low knowledge engineering costs.

Deriving student’s knowledge Modeling a stu-
dent’s internal knowledge state is a challenging task,
which has largely been done via model tracing. How-
ever, research using feature based modeling(Webb,
Chiu, & Kuzmycz 1997; Chiu & Webb 1997) has
managed to use machine learning techniques to con-
struct executable models that describe student behav-
ior. First, the ML agent is provided with a set of prob-
lems on which the student has worked, and a set of
features to characterize problems and responses. The
learning agent then automatically constructs a set of
rules to explain the student’s behavior. This model is
custom-built for each student.

This modeling technique has been found to accu-
rately predict student performance at a fine-grained
level. In fact, it predicts each "step" in the problem
solving process. The technique is general, with the
possibility of using different induction engines to de-
rive rules describing the student’s performance(Webb,
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Chiu, & Kuzmycz 1997).
Another application of this work(Chiu & Webb 1997)

has been to construct models of student misconceptions.
To do this, several decision trees were constructed, one
for each misconception. The nodes of the decision trees
were the features of the problem, and the student’s ac-
tions thus far in solving the problem.

Updating a student’s estimated ability Many in-
telligent tutors use some form of Bayesian updating rule
to estimate the student’s current degree of proficiency
on various topics within the domain. However, such
update rules require some assumptions about how stu-
dents learn the material, or at the very least, the mod-
els have parameters that must either be derived or esti-
mated. Item response theory(IRT) (Hambleton, Swami-
nathan, & Rogers 1991) is a principled way of determin-
ing a student’s ability at a particular skill based on his
performance on test questions.

A powerful aspect of IRT is that, making no assump-
tions about the ability of the students or the difficulty
of the questions, it can estimate both how hard the test
questions are, and how skilled the students are. Typi-
cally this is done by field-testing questions with a pool
of students. This serves to determine how difficult test
items are. When an ITS is deployed, it is possible to use
a student’s performance on these items to predict his
ability score (usually referred to as 0) in this area. This
update rule takes into account both the prior estimate
of the student’s ability, the difficulty of the current test
question, and his performance on this test question.

A combined architecture
The systems detailed above have made significant
progress at performing much of an ITS’s reasoning. Ide-
ally, it would be possible to combine all of these indi-
vidual efforts into one tutor that used machine learning
techniques for nearly all of the system’s reasoning. In
some cases, this involves stretching a system beyond its
initial design, but we will attempt to analyze what prob-
lems this may cause, and other alternatives available.
IRT can update the tutor’s estimate of the student’s
current level of knowledge, and feature based modeling
can predict likely student mistakes, and thus determine
probable reasons for student errors.

Figure 5 shows the possible coverage of existing ma-
chine learning components in an ITS. We have dis-
cussed automatically deriving a high-level model of per-
formance, and learning how to teach. However, with
this architecture it is possible to also automatically de-
rive misconceptions. While the ASSERT system was
limited to concept formation tasks, other research in
this area has not been as restricted.

Discussion and future work
Actually building a system with such a combined archi-
tecture is unlikely to be straightforward, and there are
several difficulties. First, there is the task of actually
integrating all of these techniques together. Different
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Figure 5: Combined architecture for ML-based ITS.

systems have made different assumptions in terms of
amount of time interacting with each user, and types
of domains for which they are applicable. Actually im-
plementing all of the agents so that they work together
is straightforward compared with this.

There is also the question of how to optimize each
component of the learning architecture. This optimiza-
tion is heavily dependent on both how the component is
to be used, and what assumptions the designer is will-
ing to make about the number of interactions with the
student. For example, NeTutor and ASSERT assume a
fairly small number of interactions with each student,
and the ML algorithms have been chosen accordingly.
In contrast, ADVISOR assumes a significant amount of
prior data have been gathered and used to construct a
population model. In addition, ADVISOR’s model for
predicting the accuracy of a student’s response would
not be useful for making critical, one-shot decisions.
However, this model of accuracy works well when mil-
lions of trials are to be run (as in training an RL agent).
This mismatch of assumptions may be problematic.

Generally, the choice for learning mechanism (e.g. de-
cision tree, Bayesian classifier, etc.) comes down to how
much training data will be available, and what types
of predictions are needed. If there is a large amount
of data, and predictions must be continuous, a neural
network may be a good choice. For low-data situa-
tions (such as NeTutor), simpler mechanisms such 
Bayesian classifiers are a better choice. In general, the
exact reasoning method is not critical in getting sys-
tems to work together.

Another issue is what knowledge is still needed to
construct tutors with this architecture. The need for
some basic set of features to describe a state seems nec-
essary. However, there has been research at having
learning agents automatically constructing their own
features(Utgoff 1996). Assuming it is necessary to con-
struct a list of features, this could entail a moderate
amount of work. It is necessary to describe the domain,



the problem solving process, feedback, etc.
In fact anything about which the ML agents will rea-

son must be described in this manner. However, find-
ing ways to describe data should be much simpler than
writing a collection of rules to reason about it. After
all, the rules must have some way of understanding the
information about which they are reasoning. In fact,
the knowledge engineering tasks are fairly similar: con-
structing a list of features is analogous to building a
language for the left-hand side of a set of rules.

Conclusions
In the past fifteen years there has been a shift away from
AI based techniques to a psychological/pedagogical ap-
proach to ITS design. However, it may be time for a
shift back to a more AI centered approach. Given the
potential shown by machine learning techniques, au-
tomatic model construction has potentials that are at
best hard to realize with traditional cognitive modeling
techniques. For instance, the ability to incorporate un-
usual data (such as cognitive development), or to adapt
the model to the current student (as in NeTutor) are
not possible with traditional techniques.

There have been several small efforts within the
AI&Ed community at applying AI techniques, but no
system that integrates many techniques. While under-
standable, given the maturity of this research area, this
is regrettable. By constructing tutors that use auto-
mated reasoning for all of their decision-making, we will
develop a much clearer understanding of exactly what
assumptions, particularly implicit ones, are part of our
AI design processes.
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