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Abstract

Prototype Selection (PS), i.e., search for relevant sub-
sets of instances, is an interesting Data Mining prob-
lem. Original studies of Hart and Gates consisted
in producing stepwise a Condensed or Reduced set of
prototypes, evaluated using the accuracy of a Nearest
Neighbor rule.

We present in this paper a new approach to PS. It is
inspired by a recent classification technique known as
Boosting, whose ideas were previously unused in that
field. Three interesting properties emerge from our
adaptation. First, the accuracy, which was the stan-
dard in PS since Hart and Gates, is no longer the reli-
ability criterion. Second, PS interacts with a prototype
weighting scheme, i.e., each prototype receives period-
ically a real confidence, its significance, with respect to
the currently selected set. Finally, Boosting as used in
PS allows to obtain an algorithm whose time complex-
ity compares favorably with classical PS algorithms.
Experiments lead to the following conclusion: the out-
put of the algorithm on fourteen benchmarks is often
more accurate than those of three state-of-the-art PS
algorithms.

Introduction

With the development and the popularization of new
data acquisition technologies such as the World Wide
Web (WWW), computer scientists have to analyze po-
tentially huge data bases (DB). Available technology to
analyze data has been developed over the last decades,
and covers a broad spectrum of techniques, algorithms,
statistics, etc. However, data collected are subject to
make interpretation tasks hazardous, not only because
of their eventually large quantities, but also when these
are raw collections, of low quality. The development of
the WWW participates to the increase of both tenden-
cies. The reduction of their effects by a suitable pre-
processing of data becomes then an important issue in
the fields of Data Mining and Machine Learning,

Two main types of algorithms can be used to fa-
cilitate knowledge processing. The first ones reduce
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the number of description variables of a DB, by select-
ing relevant attributes, and are commonly presented as
feature selection algorithms (John, Kohavi and Pfleger
1994). The second ones reduce the number of individ-
uals of a DB, by selecting relevant instances, and are
commonly presented as prototype selection (PS) algo-
rithms (Aha 1990, Gates 1972, Hart 1968, Skalak 1994,
Zhang 1992). The principal effect of both types of algo-
rithms is to improve indirectly the reliability and accu-
racy of post-processing stages, particularly for machine
learning algorithms, traditionally known to be sensitive
to noise (Blum and Langley 1997). They have also an
important side effect. By reducing the “useful” DB size,
these strategies reduce both space and time complex-
ities of subsequent processing phases. One may also
hope that induction algorithms ran afterwards will ob-
tain smaller and more interpretable formulas, since they
are trained on reduced and less noisy datasets.

PS raises the problem of defining relevance for a pro-
totype subset. From the statistical viewpoint, relevance
can be understood as the contribution to the overall
accuracy, that would be e.g. obtained by a subse-
quent induction. We emphasize that removing proto-
types does not necessarily lead to a degradation of the
results: we have observed experimentally that a little
number of prototypes can have performances compara-
ble to those of the whole sample, and sometimes higher.
This definition brings two particular criteria for char-
acterizing less relevant or irrelevant prototypes. The
first one obviously concerns noisy regions of the data.
Here, ultimately, votes can be considered as randomized
and class-conditional probabilities are evenly reparted,
which makes such regions excellent candidates for PS.
The second one concerns representativeness. The cor-
responding prototypes typically belong to regions with
very few elements. Therefore, their vote is statistically
a very poor estimator.

Historically, PS has been firstly aimed at improving
the efficiency of the Nearest Neighbor (NN) classifier
(Hart 1968). Conceptually, the NN classifier (Cover and
Hart 1967) is probably the simplest classification rule.
Its use was also spread and encouraged by early theo-
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retical results linking its generalization error to Bayes.
However, from a practical point of view, this algorithm
is not suited to very large DB because of the storage
requirements it imposes. Actually, this approach in-
volves storing all the instances in memory. Pioneer
work in PS firstly searched to reduce this storing size.
In (Hart 1968), Hart proposes a Condensed NN Rule to
find a Consistent Subset, CS, which correctly classifies
all of the remaining points in the sample set. How-
ever, this algorithm will not find a Minimal Consistent
Subset, MCS. The Reduced NN Rule proposed by Gates
(Gates 1972) tries to overcome this drawback, searching
in Hart’s CS the minimal subset which correctly classi-
fies all the learning instances. However, this approach
is efficient if and only if Hart’s CS contains the MCS
of the learning set, which is not always the case. In
such approaches, we have no idea about the relevancy
of each instance selected in the prototype subset.

More recently, in (Skalak 1994), Skalak proposes two
algorithms to find sets of prototypes for NN classifica-
tion. The first one is a Monte Carlo sampling algorithm,
and the second applies random mutation hill climbing.
In these two algorithms, the size of the prototype sub-
set is fixed in advance. Skalak proposes to fix this pa-
rameter to the number of classes. Even if this strategy
obtains good results for simple problems, the prototype
subset is too simple for complex problems with over-
laps, i.e. when various matching observations have dif-
ferent classes. Moreover, these algorithms require to fix
another parameter which contributes to increasing the
time complexity: the number of samples (in the Monte
Carlo method) or the number of mutation in the other
approach. This parameter also depends on the com-
plexity of the domain, and the size of the data. All
these user-fixed parameters make the algorithms much
user-dependent.

In this paper, we propose a new way to deal with
PS. Its main idea is to use recent results about Freund
and Schapire’s AdaBoost Boosting algorithm (Freund
and Schapire 1997, Schapire and Singer 1998). This is a
classification technique in which an induction algorithm
is repetitively trained, over a set of examples whose dis-
tribution is periodically modified. The current distrib-
ution favors examples that were badly classified by the
previous outputs of the induction algorithm, called weak
hypotheses. This ensures that the induction algorithm
is always trained on an especially hard set of instances
(Schapire and Singer 1998). The final output consists
of a weighted majority vote of all outputs, where the
weight of each weak hypothesis is a real confidence in
its predictive abilities. Our adaptation of AdaBoost to
PS has the following original features:

o Each step of the algorithm consists in choosing a pro-
totype instead of calling for a weak hypothesis. This
removes the time spent for repetitive induction. In
the PS framework, we avoid the principal criticism of-
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ten made to Boosting (Quinlan 1996): the prohibitive
time complexity.

o Each selected prototype receives a weight, equivalent
to that of Boosting for weak hypotheses. This weight
can be thoroughly explained in terms of relevance:
representativeness and usefulness.

e The best prototype, having the highest coefficient, is
kept at each stage of the algorithm. Equivalently, we
minimize a criterion derived from Boosting, which is
not the accuracy.

e When a prototype is chosen, the distribution of all
remaining prototypes is modified. This favors those
that are not well explained by the currently selected
set.

e The algorithm stops at the user’s request. Therefore,
one can fix the desired size of the subset. This is the
only user-dependent parameter of the algorithm.

When comparing this approach to the previously
cited ones, some differences appear, one of which is ex-
tremely important to us. The central mechanism for
PS is a dynamic weighting scheme. Each selected pro-
totype is given a real number which can be reliably in-
terpreted in terms of relevance. Furthermore, whenever
a prototype is selected, the distribution of the remain-
ing ones is modified. This will influence and guide the
choice of all future prototypes, toward those being reli-
able and completing accurately the previously selected
prototypes.

The remaining of this paper is organized as follows.
First, we introduce the notion of weak hypothesis, and
its link with prototype weighting and selection. This is
the central mechanism for adapting Boosting to PS.
Then, we present the whole PS algorithm. Finally,
we present some comparisons with the three previously
cited methods on fourteen benchmarks.

From Instances to Prototypes and Weak
Hypotheses

Let LS be the set of available instances, to which we
usually refer as the learning sample in classical machine
learning studies. The objective of PS is to select a rep-
resentative subset of the instances. In this subset, the
instances selected become prototypes.

Given one new instance to be classified, the classical
k-NN algorithm proceeds by taking the majority class
among its k nearest neighbors. k-NN is a simple class
of local voting procedures where votes are basically un-
weighted. In a more general setting, if we replace it by
an ordinary voting scheme where each voting instance
becomes one complex formula, and weighted votes are
allowed, then Boosting gives an efficient way to make
the whole construction.

Boosting is concerned by the stepwise construction of
voting methods, by repeatedly asking for voting, weak
hypotheses, which, put altogether, form an accurate
strong hypothesis. The original algorithm of Boosting,



ApaBoosT(LS,W,T)
Initialize distribution D;(e) = 1/|LS| for
any e € LS;
For t=1,2,..,T
Train weak learner W on LS using D,
and get a weak hypothesis h;;
Compute the confidence a;;

Update:
Ve € LS: Dyye) = Duee 20O,

/*Z; is a normalization coefficient/
endFor
Return the classifier

T
H(e) = sign(z azhe(e))
t=1
Figure 1: Pseudocode for ADABOOST.

called ADABOOST (Freund and Schapire 1997, Schapire
and Singer 1998), gives to each currently selected weak
hypothesis h; a real weight o, adjusting its vote into
the whole final set of hypotheses. While reliable hy-
potheses receive a weight whose magnitude is large, un-
reliable hypotheses receive a weight whose magnitude
tends to zero. Figure 1 presents ADABOOST in its most
general form, described in the two classes framework:
the sign of the output formula H gives the class of an ob-
servation. When there are ¢ > 2 classes, the algorithm
builds ¢ voting procedures, for discriminating each class
against all others.

The key step of ADABOOST is certainly the distrib-
ution update. In the initial set of instances, each ele-
ment can be viewed as having an appearance probabil-
ity equal to 1/|LS| multiplied by its number of occur-
rences. At run time, ADABOOST modifies this distrib-
ution so as to re-weight higher all instances previously
badly classified. Suppose that the current weak hypoth-
esis h; receives a large positive ;. In ADABOOST’s
most general setting, each weak hypothesis h; is al-
lowed to vote into the set [—1;+1], but this is not a
restriction, since the role of the ¢; is precisely to ex-
tend the vote to IR itself. A negative observation e
badly classified by h; has, before renormalization, its
weight multiplied by e~¥(e)he(e)  Since hy(e) > 0,
a; > 0 and y(e) = —1 < 0, the multiplicative factor
is > 1, which tends indeed to re-weight higher the ex-
ample. This would be the same case for badly classified,
positive observations.

The adaptation of ADABOOST to NN and then to
Prototype Selection (PS) is almost immediate. Suppose
that we have access for each instance e to its reciprocal
neighborhood R(e) = {¢' € LS : e € N(e')}, where
N(.) returns the neighborhood. Suppose we want to
weight all instances in LS. If we consider e as a weak
hypothesis, R(e) gives all points in LS for which e will
give a vote. The output of this weak hypothesis as such,

takes two possible values:
e y(e) (€ {-1;1}) for any instance in R(e),
e 0 for any instance not in R(e),

For multiclass problems, with ¢ > 2 classes, we make
the union of ¢ biclass problems, each of which discrimi-
nates one class, called +, against all others, falling into
the same class, —. Our PS algorithm is ran separately
on each problem, and the overall selected subset of pro-
totypes is the union of each biclass output. This allows
to save the notation +1/ — 1 for y(e). The standard
ADABOOST does not give the way to choose weak hy-
potheses. Suppose that we have access to more than
one h;. Which one do we choose ? In our specific
framework, the whole set of weak hypotheses is the set
of remaining instances, and this question is even more
crucial. Freund, Schapire and Singer have proposed a
nice way to solve the problem. Name W} (resp. W;)
as the fraction of instances in R(e) having the same
class as e (resp. a different class from €), and W7 is the
fraction of instances to which e gives a null vote (those
not in R(e)). Formally,

Wi = > Dy(e")
e'€R(e):y(e’')=y(e)

we = Z Dy(e')
e’€R(e):y(e)#y(e)

we = Y. D)
e’e LS\ R(e):y(e’)

Then, the example e we choose at time ¢ should be the
one minimizing the following coefficient:

Z. = 2\/(We+ + %Wg’) x (We_ + %WE)

and the confidence o, can be calculated as

w+ ;Wo
Qe = l log e_+—¥e
2 We + §W2

In these formulae, the subscript e replaces the ¢ sub-
script of ADABOOST without loss of generality, since
we choose at each time ¢ an example e € LS. In the
framework of PS, examples with negative a. are likely
to represent either noise or exceptions. Though excep-
tions can be interesting for some Data Mining purposes,
they are rather risky when relevance supposes accu-
racy, and they also prevent reaching small subsets of
prototypes. We have therefore chosen not to allow the
choice of prototypes with negative values of a.. Algo-
rithm 2, called PSBOOST, presents our adaptation of
ADABOOST to PS. Remark that whenever the best re-
maining instance e has an a. < 0, the algorithm stops
and return the current subset of prototypes. It must be
noted that this situation was never encountered exper-
imentally.

It is not the purpose of this paper to detail formal rea-
sons for calculating a. as such, as well as the choice
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PSBOOST(LS, Np)
Input: A learning sample LS of instances, an
integer N, < |LS)|
Output: A prototype subset LS’ C LS, with
LS| = N,
Initialize distribution D;(e) = 1/|LS| for
any ec LS;
Initialize candidates set LS, = LS;
Initialize LS' =0
For t=1,2,..,N,
€ = argmaZeers, Xe’ s
If o, <0 Then EndLoop;

LS'=LS'Ue
LS, =LS, — {e}
Update:

a s u(eute)

Ve' € R(e): Diya(e') = De(e )e_z, ;
Ve' € LS.\R(e): Diyy(e) = 24;
/*Z. is a normalization coefficients/

endFor
Return LS’

Figure 2: Pseudocode for PSBOOST.

of Z.. Informally, however, we can present a few cru-
cial points of the proofs in the general ADABOOST’s
settings. First, minimizing the accuracy of the voting
procedure can actually be done rapidly by minimizing
the normalization coefficient Z; of ADABoosT. Coeffi-
cients oy can be calculated so as to minimize Z;, which
gives their preceding formula. Then, putting these a; in
the normalization coefficient Z,; gives the formula above.
For more information, we refer the reader to the articles
(Freund and Schapire 1997, Schapire and Singer 1998).
Our adaptation of ADABOOST to PS is mainly heuris-
tic, since we do not aim at producing a classifier, but
rather at selecting an unweighted set of prototypes.

Some useful observations can be done about the sig-
nification of Z. in the light of what is relevance. First,
Z, takes into account representativeness as defined in
the introduction. Indeed, if an instance e belongs to a
region with very few prototypes, it is unlikely to vote for
many other instances, and Wg will be large, preventing
to reach small Z.. Second, Z. particularly takes noise
into account. Indeed, if a prototype belongs to a region
with evenly distributed instances, W, and W tend to
be balanced, and this, again, prevents to reach small
Ze. Finally, the distribution update allows to make
relevance quite adaptive, which appears to be very im-
portant when selecting prototypes one by one. Indeed,
the distribution is modified whenever a new prototype
is selected, to favor future instances that are not well
explained by the currently selected prototypes. Finally,
note that, as Z, does, a. also takes into account rele-
vance, in the same way. The higher a., the more rele-
vant prototype e.
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Experimental Results and Comparisons

In this section, we apply algorithm PSBoosT. We
present some experimental results on several datasets,
most of which come from the UCI database repository?.
Dataset LED is the classical LED recognition prob-
lem (Breiman and al. 1984), but to which the orig-
inal ten classes are reduced to two: even and odd.
LED24 is LED to which seventeen irrelevant attributes
are added. H2 is a hard problem consisting of two
classes and ten features per instance. There are five
features irrelevant in the strongest sense (John, Kohavi
and Pfleger 1994). The class is given by the XOR of
the five relevant features. Finally, each feature has 10%
noise. The X D6 problem was previously used by (Bun-
tine and Niblett 1992): it is composed of ten attributes,
one of which is irrelevant. The target concept is a dis-
junctive normal form formula over the nine other at-
tributes. There is also classification noise. Other prob-
lems were used as they appeared in the UCI repository
in the 1999 distribution.

Each original set is divided into a learning sample LS
(2/3 of the instances) and a “validation” set V'S (the
remaining third). In order to compare performances
of PSBOOST with the Hart’s, Gates’s and Skalak’s al-
gorithms, we decided to fix in advance £k = 1. The
experimental set-up applied is the following;:

1. the Hart’s algorithm CNN is run. We determine the
consistent subset CS and use this one as a learning
sample to test V'S with a simple 1-NN classifier.

2. the Gates’s algorithm RNN is run. We determine the
minimal consistent subset MCS and use this one to
test VS.

3. the Skalak’s algorithm by a Monte Carlo (MC) sam-
pling is applied, with n; = 100 samples. We choose
the number of prototypes N, = |CS)|, for compar-
isons.

4. PSBoosT (PSB in the table) is run, fixing in advance
Np = |CS]|. Note that |CS| is not a priori the optimal
size of the prototype subset. We fix N, = |CS| for
comparisons.

5. Finally, we compute the accuracy with |C'S| proto-
types, randomly (Ran) chosen into the learning sam-
ple LS.

All results are presented in table 1. In the high ma-
jority of cases (9 among 14), the |C'S| prototypes se-
lected by PSBOOST allow to obtain the best accuracies
among all five algorithms. Moreover, if we compare an
average accuracy on all the datasets (that has a sense
only for the present comparison), we can conclude that
PSBOOST seems to be the best approach, not only in
accuracy terms, but also as a good compromise between
performances and complexity of the algorithm. More-
over, it is very close to the accuracy of the standard
1-NN classifier using all learning instances, that shows

Yhttp:/ /www.ics.uci.edu/ mlearn/MLRepository.html



Dataset INN CNN RNN PSB MC Ran
LED24 66.5 640 625 70.5 66,0 59.0
LED 80 695 695 835 825 80.0
W.House 925 860 865 885 92,0 880
Hepatitis 709 746 127 718 7456 61.8

Horse 708 673 673 738 69,6 60.1
Echo. 590 639 639 6590 63,0 60.1
Vehicle 682 619 619 69.7 69,0 61.1
H2 56.6 599 599 56.1 58,0 54.7
Xdé 736 72,5 725 710 740 69.0
Breast W 977 963 963 97.7 97.7 94.0
Pima 69.7 659.0 59.0 73.7 69,0 66.0

German 674 608 608 688 656 65.6
Ionosph. 914 819 802 871 843 80.0
Tic-tac-toe 782 760 763 785 746 744
Average 75.1 T71.0 70.7 750 744 69.6

Table 1: Comparisons between five prototype selection
algorithms on 14 benchmarks. 1-NN is the standard
1-NN classifier using all learning instances

the interest of our approach which does not compromise
the generalization accuracy.

Conclusion

We have proposed in this paper an adaptation of Boost-
ing to Prototype Selection. As far as we know, this is
the first attempt to use Boosting in that field. Even
more, Boosting was previously sparsely used in Ma-
chine Learning to Boost Nearest Neighbor classifiers
(Freund and Schapire 1996). In this work, the use of
Boosting was also much different from ours, not only
in the motivations (Classification, to recognize hand-
written digits), but also in the way to grow the strong
hypotheses. In particular, weak hypotheses consisted
in whole Nearest Neighbor classifiers, and not in sim-
ple instances. In the field of PS, the novelty of the
Boosting approach stems from the following crucial as-
pect. PS is achieved by an adaptive weighting scheme.
Each prototype receives a weight which quantifies its
relevance, both in terms of representativeness and use-
fulness. Equivalently, the prototype to look for can be
found at each stage of the algorithm by optimizing a
criterion being not the accuracy, which was in turn a
common aspect to previous state-of-the art PS algo-
rithms. After a prototype is selected, each remaining
instance updates a distributional weight, so as to be
weighted higher if it is badly explained by the currently
selected prototypes. This is the adaptive part of the
selection mechanism.

While we do not use, in this paper, the weight in any
classification rule, we can note that this strategy is simi-
lar to build a weighted classifier. It deserves then future
investigations and comparisons in the field of weight-
ing instances. Actually, first experiments using all the
weighted learning instances in a weigthed classification
rule (not exclusively a NN rule), seem to show the ef-
ficiency of such a method, and will be the subject of

future thorough studies.
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