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Abstract

Identification of affine deformed and simultane-
ously blur degraded images is an important task
in pattern analysis. Use of global moment fea-
tures has been one of the most popular techniques
for pattern recognition and classification. In this
paper, we introduce an approach to derive blur
and affine combined moment invariants(BACIs).
A neural network(NN) model is then employed
to classify objects using these BACIs.

Introduction
The objective of a typical computer vision system is
to analyze images of a given scene and recognize the
content of the scene. Most of these systems share a
general structure which is composed of four building
blocks: image acquisition, preprocessing, feature ex-
traction, and classification. The main focus of this
paper is on the feature extraction and classification
problems.

hnages to be processed are usually unsatisfactory
with geometric distortion and/or blur degradation.
About geometric deformations, we mainly discuss the
2-D general affine transformation, which transforms
the original image f(x, y) to a new image f’(x ~, y~) and
ha:~ the following form:

()=A
z

+B (1)y’ y

whereA=(all a21 a22 al~) is a h°m°gene°us affine

(hi)transformation matrix, B = b.2 is the translation

transformation., and ali a._,2 - a21 st, _. ¢ 0.
In real applications, since imaging systems and imag-

ing conditions are usually imperfect, the observed im-
age generally represents a blurred version of the orig-
inal scene. For example, satellite images obtained
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from Advanced Very High Resolution Radiometer suf-
fer from blur due to a multiparametric composite point
spread function of the device. If f(x, y) is the ideal im-
age, g(x, y) is the observed image. The blur model of
the image is given as

(2)

where h(x, y) is the point spread function(PSF) and
"*" is the convolution operation.

An efficient method to extract features which are
invariant to both blur degradation and affine deforma-
tion is very useful in many application areas such as
remote sensing, astronomy and medicine etc. Moments
and functions of moments have been utilized as pattern
features in a number of applications, see for example
(Chung and Wong 1997; Teh and Chin 1988) etc.

Generally speaking there are two approaches to get
moment invariants with respect to geometric transfor-
mation. One is to find invariant functions of the mo-
ments of the image directly (Flusser and Suk 19’93;
Reiss 1993; Taubin and Cooper 1989) using algebraic,
tensor, and matrix techniques respectively. The other
approach is to normalize the image by finding a linear
coordinate transformation that results in a standard
form of the image. If an object is in its standard form,
then any feature that can be calculated is invariant.
Based on the method proposed in (Flusser and Suk
1998), we are able to extract the blur invariant fea-
tures directly from the blurred image without the PSF
identification and image restoration.

But so far there is no method available to derive
affine and blur combined invariants systematically even
though this concept was mentioned in (Flusser and Suk
1998). Note that any simple combination of the exist-
ing schemes on blur and affine invariant feature ex-
traction without any modification cannot obtain the
required features. In this paper we will introduce an
image normalization method that can give moment in-
variants which are invariant with respect to both blur
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degradation and affine deformation. Firstly, we nor-
realize an image to a standard form. The key point of
this step is that the degree of blur should not have any
influence on such a standard form. To ensure this, we
impose normalization constraints by using blur invari-
ant moments in contrast with existing methods. To
guarantee the existence of a solution, we then extend
the normalization transformation from real domain to
complex domain. The resulting moments of this step
are still affine invariants. Then we construct blur in-
variants based oll the obtained standard form and this
gives blur and affine combined invariants.

Neural networks can perform different tasks, one of
which is in the context of a supervised classifier (Tang,
Sriniivasan, and Ong 1996; Khotaanzad and Lu 1990).
As classifiers, neural networks have the advantage of
allowing more complex decision boundaries in feature
space, and this results in lower error rates. In this
paper a neural network approach is used to do classi-
fication using BACIs.

The organization of this paper is as follows. In sec-
tion 2, the feature extraction procedure is described.
Section 3 briefly introduces the structure of the neu-
ral network classifier and then gives the experimental
results. The conclusions are given in section 4.

Extraction of BACIs

In this section, we mainly discuss the procedure of ob-
taining the blur and affine combined moment invari-
¯ mts(BACIs). Firstly we introduce the basic knowledge
about moments. Then the xlormalization procedure to
get a standard form of an image is given. Lastly we
construct blur invariants based on the obtained stan-
(lard form and this gives BACIs.

Moments

We now give the definition of moments. The two di-
mensional (p + q)-th order geometric moment mpq of 
gray-level image f(x, y) is defined by

mpq = xVyq f(x, y)dxdy. (3)
O0 O0

The. (p + q)-th order central nmnmnt #pq is defined 

#,,q = (x - x,.)P(y y, .)qf(x,y)dxdy, (4
oo oo

where x,. and y: are given by the relations

ID, 10 ’/D,O 1:r,, = and y,.= (5)
?D,0() ?D,00

and point (:r~., y:) is called the center of gravity or cen-
troid of the image f(x, y).

New Constraints of Normalization
If an image is deformed by affine transformation and
degraded by blur simultaneously, we cannot obtain the
same standard position for both the original image and
the degraded image using the existing normalization
methods, such as those mentioned in (Voss and Suesse
1997).

We now propose a new scheme which uses blur in-
variant moments as normalization constraints. By this
scheme, all the degraded images of the same object
with different blur degrees have the same standard po-
sition with respect to affine transformation. We use
four third order central moments #30, #12, #21, #03,
which are the simplest and lowest order blur invari-
ants, as normalization constraints.

A nonsingular homogeneous affine transformation
matrix A can be separated into an x-shearing, a y-
shearing, and an anisotrope scaling matrix as follows:

(o1 a21 a22 y

c~ 0 10 1 fll)(y
:(0 ’)(7 1) (0 x). 

An appropriate normalization procedure must be de-
signed so that the four third order moments can be
used correctly to guarantee that the later normaliza-
tion constraints will not destroy the previous ones. For
x-shearing normalization, we choose one which will
not be destroyed by the y-shearing normalization in
the steps followed. Among the four third order blur
invariants only #30=0 satisfy this requirements. For
y-shearing normalization, we choose #03=0. For the
anisotrope scaling normalization, #21 =#12 = 1 are used.
However, there may be no solution in the real domain
under these constraints. Thus we extend the normal-
ization transformation, as presented in the remaining
part of this section, to the complex domain.

Extraction of Blur and Affine Combined
Invariants
In this section, we will derive the blur and affine com-
bined moment invariants step by step. In the following,
#pq denote the central moments of the original image.

denote theX-Shearing Normalization Let #pq
central moments after x-shearing normalization. Then

k=O

We use the constraint that #~o = 0 to implement the
x-shearing normalization, i.e.,

I
#30 = P(~) = (8)

where P(~) = P.30 + 3~#21 + 3B2#12 + f/3#03.
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" be the centralY-Shearing Normalization Let #pq
moments after y-shearing normalization, then

I-gpq l t p-}-q-l,l"

l=O

(9)

Similarly, we use itS3 -- 0 to const,’Mn the y-shearing
normalization, i.e.,

#0’3 = P(7) = (10)

where P(7) = 372p~z + 37#~.~ + 143.

’" beAnisotrope Scaling Normalization Let iLpq
the central moments after anisotrope scaling normal-
ization, then,

m p+l q-t-[, it
ppq = t~ 6 t’pq. (11)

I1! IllWe now use ~12=~21 =1 to process the scaling normal-

ization. Then from equation (11), we get

JZ’
 =VZ

Finally, it is summarized that the resulting image sat-
isfies the normalization constraint~

=o, = 1, = 1, =o. (13)

Parameter Selection Criteria Note that P(/3) will
have three solutions and P(7) will have two solutions.
Thus we will have six groups of/3 and 7. This means
that we will have six standard positions for a given
object. Clearly some of them are unnecessary and need
to be deleted so that only one standard position is left.
This can be done by appropriately selecting parameters

fl ~md 7. We now give the following two lemmas on how
to select parameters/3 and 7- The proofs can be found
in (Zhang 1999).

I, emrna 1 If P(~3) has three real roots, namely/3~,i 
1, 2, 3, then for each/3i, P(7) will result in two real
roots.

JT, emrna 2 If P(/3) has a pair of conjugate complex
roots, P(7) has a pair of conjugat.c complex roots. 
this case, only the real root of F(~) can satisfy the
normalization constraints (13).

When P(/3) has three real roots, we will have six
real groups of solutions from equation (8) and (10).

’" in (11), a suitable group of/3 andBy considering/~pq
7 can be obtained as follows:

(14)
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That is, the group of (/3, 7) that results in the mini-
’" is chosen.mum value of a given/Zpq

When P(/3) has a pair of conjugate complex roots
parameter/3 is chosen to be the real root of P(/3). 7 
chosen as the root of P(7) that gives the same sign 

Illthe real part and imaginary part of a given #pq.

Blur and Affine Combined Invariants Based on
the affine invariant moments obtained by normaliza-
tion, blur and affine combined moment invariants can
be constructed. If the PSF is central symmetry, only
the odd order blur invariants exist. The third, fifth
and seventh order blur and affine combined invariants
can be derived as follows. In the following equations

Az which are affine invariant, denote the moments
11‘pq

obtained at the standard position.
The third order BACIs are

BACIol Az=ILoz =0, BACIo2=It¢./ =1,

BACIos = It., At = 1, BACIo4 = AI11‘.3o = (}.

The fifth order BACIs are

BACIz At
= 11,50

AIBACI2 = P41

BACIz AI

BACI4 Az
//23 -- --

BACIh= AIItl4

BACIe = AI/tOn

6 At

/ ~’//2o,
00

3 , AI + 2.f/),
3 ,. AItOt~o= + 21~a~ ),

frO0

6 , AI~
-- ..--TT L//o’, ),

UO0

The seventh order BACIs are

BACIr A~ 21 , i Az Al,= ~UTo - ,--,2Ttl 50 P2o ),
/~00

3 "2 AI AI r...AI..AI 5ltfg)BACIa = #6A1~ -- ,-’:’~-L //so/~zz + ’JH’41 i’20 -~
/~oo

90 . AZ’~-
"4- ~(,11‘20 ),

BACI9 = #A2t- 1 , AI AI .,~ AI AI 20ttAlI
s-’~-i,/’50 ~02 + IU/J’32 //20 -t-
P"O0

.. AI AI 30 . AI2.. AI AI\
+ lUp’41 J[’$11 "~ 5//’40/) + ~(,~20 -I- zt[/,20 ]LII ),

# .J~l

3 ,.~ A1 A! AI . ~ Ai AIBACIlo =//4Az - ,-7/-X-i-~o//2.,~ + 4pAl + /~41 //o= ~ a//3’,//~
I*O0

. az At, 36 "2 AI2 " " AI AI 2 AI AI,
~’//23//20 ) -’t- ~ [ /~11 4- z:It2o/ttl "k-//02 It2o 1,

BACI~I //A~ 3 ,.~ AI 4~~Aat . al At +4 At LAI
= --~ I,O//22 -I- ’-t- tt14 //20 /.&23 I 11

//O0

.~_, AI AI~ 36 z, A12 . . AI AI2 AI AIx
Zlt32 P, O2 ) + -’-----x . "{’-

//A0/2 t/-/-611 "4- Z/I02 ]~11
//20/102 ),



BACI~2 Al 1 , AI AI .,, a~ AI 20g;~J
= 11.25 -- ..--.-.-.-.-.-~7(1105 1120 -3t- 1.tl/t23 /tO.2 "4-

/too
.,, AI AI 30 ,. AI2 A AI Alx

+ 1U1/’14 1/’11 "4- 511, AI) "4- ~P’20 Jr" 411"02 ]tll ),
Poo -

BACI13 A1 3 ,,. A1 AI r, AI AI r. AI
= Itla -- /-~-a/tZ/’o5 lLtl + o1,14 Ito2 +alto., )

90 , AI2.

/to~d., t/to, ),
21 , AI AIxBACI14 = ItA( -- .--AykItos tto2 1.

Itoo

Note that BACI01 to BACI04 are normalization
constraints which are the same for all nornlalized im-
ages. Thus we use the fourteen features BACII to
BACII4 during classification process.

Classification Using NN
Based on the BACIs obtained in the last section, image
classification can be performed using neural network
classifiers. A block diagram of our blur and affine in-
variant classification system is presented in Figure 1.

Feature Extraction

hldependent ~ of I-~1 Network I-~1 Re.~;ults ]

Novmali~,’io,t I SACt I. I C’"~incrl L J

Figure 1: The system architecture

Feedforward neural networks have been frequently
used for pattern recognition and classification. Mul-
tilayer perceptrons (MLPs) networks trained with the
back propagation algorithm are typical representative
of this class of networks. MLPs consist of multiple lay-
ers of neurons: an "inlmt layer", one or more "hidden
layers", and an "OUtl)ut layer". The structure of the
MLP with one hidden layer is shown in Figure 2. The
network attempts to implement a mal)l)ing between 
input feature set and a desired om.t,ut pattern.

In our experiment, an MLP wii, h one hidden layer
is used. The immber of neurons in the input layer is
the same as the number of features. In our case, the
fourteen blur and affine combined moment invariants
are used as inputs to the neural network. The num-
ber of hidden neurons is determined heuristically I)ase(l
on the trade-off between complexity and classification
ability of the net. The Immber of neurons in the out-
put layer is equal to the nulnber of classes which is ten
in our studies. The activation flmction for the neurons
of the hidden layer and the output layer used is the
sigmoid function.

fl

Hiddern
Input /er Output
Layer Layer

Class I

1"2 Class 2

fN
Class M

Figure 2: The structure of MLP

4 5 6

7 8 9 10

Figure 3: Set of fish inmges used as reference

Figure 4: Sample images of fish ’3 fl’om the database.

Ore" test objects consists of gray-level inmges of fish
that are l)resented directly to the system. The refer-
ence objects are. shown in Figure 3. ()ne tnmdred (lif-
ferent affine defornted, blur degrade(i, and affiim and
I)hu’ combined images are generated for each reference
object. Examples of these images tbr fish 3 are shown
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in Figure 4. The first row is fish 3 detbrmed by dif-
ferent affine trausformations. Tile secoud row is the
corre.spondiug blur and a/fine combined versions.

There are total 1000 images in the database for tim
l I) ,’eferenee objects. The available samples are di-
vided into two sets for training and testing. We use
40 training images and 60 testing images per reference
object. For each inaage, the fourteen BACIs, BACII

to BACI14, eu’e calculated and fed to the neural net-
work to perform the classification process. The values
of BACIs of fish 3 and the four images in the second
row of Figure 4 are listed in Tabh, I.

Fish 3 original image BDADI1
BACII 0 + 0.5222i 0 + 0.5217i
BACI2 -0.4332 + 0.1610i -0.4333+ 0.1577i
BACI3 -0.5104 + 0.2611i -0.5111+ 0.2608i
BACI4 -0.2999 + 0.1816i -0.3008+ 0.1787i
BACI.~ -0.4051 + 0.2019i -0.4056+ 0.1996i
BACI(~ -0.5104 + 0.2216i -0.5111+ 0.2199i
BACI7 -0.1262 + 0.4173i -0.1310+ 0.4168i
BACIs 0- 1.5507i 0- 1.5450i
BACI9 0.8441 - 0.7754i 0.8442 - 0.7725i

BACIto 0.2321 + 0.2211i 0.2282 + 0.2286i
BACI, I 0.4077 + 0.0320i 0.4045 + 0.0356i
BACI,.2 0.8441 - 0.4720i 0.8442 - 0.4674i
BACIx3 0.5652 - 0.1491i 0.5629 - 0.1442i
BACII4 0.7047 - 0.3203i 0.7036 - 0.3149i

BDADI2 BDADI3 BDADI4
0 + 0.5273i 0 + 0.4953i 0 + 0.5542i

-0.4348+ 0.1590i -0.4195 + 0.1599i -0.4439 + 0.1896i
-0.5121+ 0.2636i -0.5077 + 0.2477i -0.5041 + 0.2771i
-0.3024+ 0.1809i -0.2851 + 0.17(18i -0.3093+ 0.2134i
-0.4072+ 0.2024i -0.3964 + 0.1850i -0.4067 + 0.2348i
-0.5121+ 0.2278i -0.5077 + 0.2059i -0.5041+ 0.2489i
-0.1274+ 0.4137i -0.1247 + 0.3922i 0.0871+ 0.4513i

0- 1.5650i 0- 1.4336i 0- 1.715i
0.8502 - 0.7825i 0.8182 - 0.7168i 0.8550 - 0.8573i

-0.2307 + 0.2207i 0.2126 + 0.1963i 0.2816 - 0.2302i
0.4078 + 0.0334i 0.3695 + 0.0234i 0.4644 + 0.0092i
0.8502 - 0.4735i 0.8182 - 0.4289i 0.8550 - 0.5516i
0.5617 - 0.1472i 0.5220 - 0.1327i 0.6157 - 0.2050i
0.7087 - 0.3191i 0.6702 - 0.2850i 0.7353 - 0.3987i

Tablr. 1: Tile values of BACIs of fish 3 mid its blur de-
graded and affine deformed images(BDADI) as shown
in t, he second row of Figure 4

The main problem in using an MLP is how to choose
optim~ parameters for tile network. There is currently
no stan(tard technique for automatically setting the I)a-
rameters of an MLP. Tal)le 2 shows the best results ob-
tained after mnnerous experiInent’, The l)ercentage of
correct classifications in the test :a:t is about 99% and
clearly this is very high. Most of the errors are due to
the quantization caused by ~tffine transformation. Fu-
ture work could be done in the, feature extraction stage
to improve the i)erformanee of the system.

No. Of Learn- Moment- Error Itera- Initial
Hiddern ing um Rate Level tion Weights
Neurons Rate Range

6O 0.05 0.1 0.001 1,000 [-0.5,0.5]
Table 2: Neural Network Parameters

Conclusion
The main objective of this paper is to develop a neural
network based blur degradation and affine deforma-
tion combined invariant classification system. In the
feature extraction stage, we propose a normalization

method to determine blur and a~ine combined invari-
ants. By applying the proposed method, a set of blur
and affine combined invariants can be obtained. Then
the classification is done using a multilayer perceptron
network (MLP) with back-propagation learning. The
system has been tested and has shown a high classifi-
cation accuracy.
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