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Abstract 

Hierarchical conceptual clustering has been proven to be a 
useful data mining technique. Graph-based representation of 
structural information has been shown to be successful in 
knowledge discovery. The Subdue substructure discovery 
system provides the advantages of both approaches. In this 
paper we present Subdue and focus on its clustering 
capabilities. We use two examples to illustrate the validity 
of the approach both in structured and unstructured 
domains, as well as compare Subdue to an earlier clustering 
algorithm. 

 
Introduction 

Cluster analysis has been studied and developed in many 
areas for a wide variety of applications. Among these are 
model fitting, hypothesis testing, hypothesis generation, 
data exploration, prediction based on groups, data 
reduction and finding true topologies [Ball 1971]. 
Clustering techniques have been applied in as diverse 
fields as analytical chemistry, geology, biology, zoology 
and archeology, just to mention a few. Many names have 
been given to this technique, among which are cluster 
analysis, Q-analysis, typology, grouping, clumping, 
classification, numerical taxonomy, mode separation and 
unsupervised pattern recognition, which further signifies 
the importance of clustering techniques [Everitt 1980]. 

The purpose of applying clustering to a database is to 
gain better understanding of the data, in many cases 
through revealing hierarchical topologies. An example of 
this is the classification of vehicles into groups such as 
cars, trucks, motorcycles, tricycles, and so on, which are 
then further subdivided into smaller and smaller groups 
based on some other traits. 

In this paper we present Subdue, a structural knowledge 
discovery system, specifically focusing on its clustering 
capabilities. After acknowledging some earlier works, we 
describe Subdue, and present examples to highlight our 
results. 
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Related Work 

Numerous clustering techniques have been devised in the 
past, among which are statistical, syntactic, neural and 
hierarchical approaches. In all cases, clustering is 
inherently an unsupervised learning paradigm, since it 
consists of identifying valuable groupings of concepts, or 
facts, which hopefully reveal previously unknown 
information. Most techniques have some intrinsic 
disadvantages, however. Statistical and syntactic 
approaches have trouble expressing structural information, 
and neural approaches are greatly limited in representing 
semantic information [Schalkoff 1992]. 

Nevertheless, many relatively successful clustering 
systems have been constructed. An example of an 
incremental approach is Cobweb, which successively 
considers a set of object descriptions, while constructing a 
classification tree [Fisher 1987]. Labyrinth [Thompson and 
Langley 1991], an extension to Cobweb, can represent 
structured objects using a probabilistic model. AutoClass 
[Cheeseman at al. 1988] is an example of a bayesian 
classification system, which has a probabilistic class 
assignment scheme. It can deal with real, discrete, or 
missing values. Yet another algorithm, called Snob, uses 
the Minimum Message Length (MML) principle to do 
mixture modeling—another synonym for clustering 
[Wallace 1968].  

There also exist hierarchical approaches that work on 
databases containing data in Euclidian space. Among these 
are agglomerative approaches that merge clusters until an 
optimal separation of clusters is achieved based on intra-, 
and inter-cluster distances. Divisive approaches split 
existing clusters until an optimal clustering is found. These 
approaches usually have the disadvantage of being 
applicable only to metric data, which excludes discrete-
valued and structured databases. Examples of these are 
Chameleon [Karypis, Han and Kumar 1999] and Cure 
[Guha, Rastogi and Shim 1998]. 
 

Conceptual Clustering Using Subdue 

Subdue [Holder and Cook 1993] is a knowledge discovery 
system that can deal with structured data—a very 
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important feature in more and more applications. Subdue 
expects a graph as its input, hence a database needs to be 
represented as a graph before passing it to Subdue. This 
graph representation includes vertex and edge labels, as 
well as directed and undirected edges, where objects and 
data usually map to vertices, and relationships and 
attributes map to edges (see Figure 2 for an example).  

Subdue’s discovery algorithm discovers interesting, 
repetitive substructures in the input graph.  Our Graph-
Based Hierarchical Conceptual Clustering (GBHCC) 
algorithm begins with an empty lattice and calls Subdue to 
find a substructure S that maximally compresses the input 
graph G. If S achieves some compression of G, then S is 
added to the lattice and used to compress the graph G. The 
compressed graph is passed again to Subdue to find 
another substructure. This iterative approach on 
successively more compressed graphs allows Subdue to 
find new substructures defined in terms of previously 
discovered substructures.  Therefore, when substructures 
are added to the lattice, their parents may include other, 
non-root nodes in the lattice.  If a substructure is composed 
of two of the same previously-discovered substructures, 
then there will be two links from the parent to the child in 
the lattice. 

Subdue’s discovery algorithm discovers substructures in 
the input graph. Subdue uses a beam search that–starting 
with single-node subgraphs–incrementally expands the 
substructures that seem the best thus far. During the 
expansion process, a substructure is expanded in all 
possible ways by its neighboring vertices, and all instances 
of these new substructures are found. This discovery 
process continues iteratively until all possible subgraphs 
have been considered, or the algorithm reaches a user-
specified limit. After the best substructure is found and the 
graph is compressed, the process starts all over, finding 
another best substructure. This search is guided by the 
Minimum Description Length (MDL) principle, originally 
developed by Rissanen [Rissanen 1989]. According to the 
evaluation heuristic, the best substructure is the one that 
minimizes the description length of the graph when 
compressed by the substructure. When compressing the 
graph, all instances of the substructure are replaced by a 
single vertex, which is a pointer to the substructure’s 
definition. 

This approach imposes more and more hierarchy on the 
database with each successive iteration. The definition of 
the best substructure after a single iteration yields the 
description of a cluster. After identifying a cluster, it is 
inserted into the classification lattice (see Figure 5). 
Previous works on clustering suggested the use of 
classification trees, however, in structured domains the 
strict tree representation is inadequate. We realized that in 
certain domains a lattice-like structure emerges instead of 
a tree. 

Subdue searches the hypothesis space of all 
classification lattices. During each iteration of the search 
process, numerous local minima are encountered, where 
the global minimum tends to be one of the first few 
minima. For clustering purposes the first local minimum is 
used as the best partial hypothesis. The reason for this is 
easy to see. Subdue starts with all the single-vertex 
instances of all unique substructures, and iteratively 
expands the best ones by a single vertex. The local 
minimum encountered first is therefore caused by a 
smaller substructure with more instances than the next 
local minimum, which must be larger, and have fewer 
instances. A smaller substructure is more general than a 
larger one, and should be a parent node in the classification 
lattice for any more specific clusters. Even though it is 
entirely possible to use the global minimum as the best 
substructure, we found that if the global minimum is not 
the first local minimum it may produce overlapping 
clusters. Overlapping clusters are those that include the 
same information. For example, in a particular clustering 
of the vehicles domain two clusters may include the 
information “number of wheels: 4”. This suggests that 
perhaps a better clustering may be constructed in which 
this information is part of a cluster at a higher level. 

Subdue supports biasing the discovery process. 
Predefined substructures can be provided to Subdue, which 
will try to find and expand these substructures, this way 
“jump-starting” the discovery. The inclusion of 
background knowledge proved to be of great benefits 
[Djoko, Cook and Holder 1997]. Inexact graph matching is 
also provided by Subdue to account for slight variations of 
a substructure. The user is given control of the degree of 
similarity between the substructures to be considered the 
same. Subdue also supports supervised learning, where 
positive and negative examples are provided to the system. 
Substructures found that are similar to positive examples 
are given a higher value, while substructures similar to the 
negative examples are penalized. This way of influencing 
the discovery process has proven successful, an example of 
which is the application of Subdue to the chemical toxicity 
domain [Chittimoori, Holder and Cook 1999].  
 

Experiments 

A small experiment devised by Fisher can serve as an 
example of Subdue’s performance on unstructured data, as 
well as offer a brief comparison to Cobweb. The database 
used for the experiment is given in Table 1. Cobweb 
produces the classification tree shown in Figure 1, as 
suggested by Fisher [Fisher 1987]. 

The animal domain is represented in Subdue as a graph, 
where attribute names (like Name and BodyCover) were 
mapped to edges, and attribute values (like mammal and 
hair) were mapped to vertices.   In  unstructured  databases 



Table 1  Animal Descriptions 

Name Body Cover  Heart Chamber Body Temp. Fertilization 

mammal hair four regulated internal 

bird feathers four regulated internal 
reptile cornified-skin imperfect-four unregulated internal 

amphibian moist-skin three unregulated external 

fish scales two unregulated external 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
like this the data set translates to a collection of small, star-
like, connected graphs. Intuitively, we would map the 
“main” attribute–Name in this case–to the center node and 
all other attributes would be connected to this central 
vertex with a single edge. We found, however, that a more 
general representation yields better results. In this 
representation  the  center  node  becomes  a  very  general 
description of the example. In this case the center node can 
be animal. Note that the Name attribute becomes just a 
regular attribute (see Figure 2). In the most general case, 
the center node could be named entity, or object, since the 
designation is quite irrelevant to the discovery process—
the purpose is proper structural representation.  

Subdue generated the hierarchical clustering shown in 
Figure 3. Subdue actually produces a hierarchical graph as 
its output that can be viewed with a visualization software. 
This also allows us to include informative details in the 

classification lattice. A node in the classification hierarchy 
includes the description of vertices and edges that form the 
cluster.  

Subdue’s result is similar to that of Cobweb’s. The 
“mammal/bird” branch  is  clearly  the  same.  Amphibians 
and fish are grouped in the same cluster based on their 
external fertilization, which is done the same way by 
Cobweb. Subdue, however, incorporates reptiles with 
amphibians and fish, based on their commonality in 
unregulated body temperature. This clustering of the 
animal domain seems better, since Subdue eliminated the 
overlap between the two clusters (reptile and 
amphibian/fish) by creating a common parent for them that 
describes this common trait. 

To illustrate Subdue’s main advantage–the ability to 
work with structured data–we present a task that involves 
describing a DNA sequence by clustering. A portion of the 

Figure 1  Hierarchical clustering over animal descriptions by Cobweb. 

animal 

hair 

mammal 

BodyCover 

Fertilization 

HeartChamber

BodyTemp 
internal regulated 

Name four 

Figure 2  Graph representation of an animal description 

reptile 

mammal bird fish amphibian 

amphibian/fish 

animals 

mammal/bird 



DNA is shown in Figure 4. To represent the DNA as a 
graph, atoms and small molecules are mapped to vertices, 
and bonds are represented by undirected edges. The edges 
are labeled according to the type of bond, single or double. 
A portion of the classification lattice is shown in Figure 5. 
For better understanding, we show the chemical 
compounds the clusters define, rather than the textual 
description extracted from the graph representation of the 
DNA (like in Figure 3). 

The lattice closely resembles a tree, with the exception 
that two nodes (bottom-left) have two parents. The lattice 
in Figure 5 describes 71% of the DNA sequence shown in 
Figure 4. As the figure shows, smaller, more commonly 
occurring compounds are found first that compose the first 
level of the lattice. These account for more than 61% of 
the DNA.  Subsequently  identified  clusters  are  based  on 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 4  Portion of a DNA molecule 
 
 

Figure 3  Hierarchical clustering over animal descriptions by Subdue. 

Figure 5  Partial hierarchical clustering of a DNA sequence. 
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these smaller clusters that are either combined with each 
other, or with other atoms or molecules to form a new 
cluster. The second level of the lattice extends the 
conceptual clustering description such that an additional 
7% of the DNA is covered. Evaluation of the domain-
relevance of Subdue’s findings will require the assistance 
of a domain expert. 

The best clustering is usually the one that has the 
minimum number of clusters, with minimum number of 
overlaps between clusters, such that the entire data set is 
described. Too many clusters can arise if the clustering 
algorithm fails to generalize enough in the upper levels of 
the hierarchy, in which case the classification lattice may 
become shallow with a high branching factor from the 
root, and a large number of overlaps. On the other extreme, 
if the algorithm fails to account for the most specific cases, 
the classification lattice may not describe the data entirely. 
Experimental results indicate that Subdue finds clusterings 
that effectively trade off these extremes. 

 

Conclusions 

Most previous efforts at clustering work with unstructured 
databases that simply enlist object descriptions. Subdue 
overcomes this restriction by representing databases using 
graphs, which allows for the representation of a large 
number of relationships between items, which is an 
integral part of defining clusterings.  

We have demonstrated that Subdue’s performance on 
unstructured datasets parallels one of the most prominent 
algorithms so far, perhaps even outperforming it. We also 
showed Subdue’s applicability to chemical domains—
specifically, a conceptual clustering of a DNA sequence. 

Future work on Subdue will include defining 
hierarchical clusterings of real-world domains, and 
comparisons to other clustering systems. Since data mining 
researchers have to rely on experts’ opinion to evaluate the 
effectiveness of their clustering algorithm, it would be 
extremely useful to devise metrics for objective evaluation 
of clusterings. 
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