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Abstract

Fitness function computations are a bottleneck in ge-
netic algorithms (GAs). Caching of partial results
from these fitness computations can reduce this bottle-
nec_J¢. We provide a rigorous analysis of the run-times
of GAs with and without caching. By representing
fitness functions as classic Divide and Conquer algo-
rithms, we provide a formal model to predict the effi-
ciency of caching GAs vs. non-caching GAs. Finally,
we explc~e the domain of protein folding with GAs
and demonstrate that caching can significantly reduce
expected run-times.

Introduction

In genetic algorithms, the computation of the fitness
function provides the largest computational load for
the algorithms. Each population generation is com-
posed of individuals who are formed from previous gen-
eratious via cloning, crossover, or mutation.

Therefore, it is quite clear that the fitness functions
of these individuals are based in part on the fitness
calculations of their ancestors. That being the case,
storing either full fitness values or, potentially more
rewarding, storing partial results of fitness computa-
tions from previous generations, can be beneficial. In
other words, when would caching results be beneficial?
However, storing, accessing and determining the exis-
tence of partial fitness computations are not a straight-
forward task. When should we store (cache)? What
partial computation should we store? When is it worth
accessing the cache to determine whether a partial re-
sult exists? Or, at a more general level, which fitness
functions should utilize caches and how do we ensure a
diversity of cached results? While there has been some
work on exploring the ideas of caching partial results
(Langdon 1998), these have only concentrated on em-
pirical analyses. To the best of our knowledge, we are
the first paper to provide concrete theoretical analyses
on caching and cache diversity of fitness function com-
putation. In fact, for fitness functions which can be
represented as classic Divide and Conquer algorithms,

efficiency of the genetic algorithm under any number
of conditions can be significantly improved.

This paper is divided into the following sections.
First, we provide a brief overview of genetic algo-
rithms and the general idea of caching. Next, we
briefly present an overview on the divide and conquer
paradigm central to our ~n~lyses. With this back-
ground, we present our theoretical analysis and pro-
vide a formal model of the effectiveness of caching and
apply it to protein folding.

Overview GA

The class of algorithms based on simple Genetic Algo-
rithms (GA) (Michalewicz 1992) is a randomized 
proach to combinatorial optimization. Optimization is
achieved when genetic algorithms take a small sample
from the space of possible solutions (called the popu-
lation) and use it to generate other (possibly better)
solutions. The method of generating new solutions is
modeled after natural genetic evolution.

Each population is subjected to three basic oper-
atious (selection, crossover and mutation) during the
course of one generation; the results of the operations
determine the composition of the population for the
next generation. The three operations are probabilis-
tic in nature; this allows the GA to explore more of the
search space than a deterministic algorithm.

The two issues that must be addressed when map-
ping a problem domain into a problem that is solvable
by GAs are:
¯ How to represent a solution to the problem as a gene

containing a set of chromosomes that can be genet-
ically manipulated

¯ How to evaluate the fitness of a solution
The genetic operations manipulate each gene by chang-
ing the values of the chromosomes.

1The authors have been actively pursuing GAs for a
number of domains including bayesian reasoning (Zhong
& Santos 1999; Santos & Shimony 1998), protein folding
(Santos, Lu, & Santos 2000), and scheduling.
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The selection operation is the standard "roulette
wheel" selection approach, based on the ranking of the
individuals within the population instead of the abso-
lute performance value. With the wide range of perfor-
mance values typical to this problem domain, a strictly
performance-based selection disproportionately favors
the highest probability solution; this causes prema-
ture convergence of the population onto a local op-
timum. The crossover operation performs a two-point
crossover: two selected genes axe broken in two ran-
domly selected places and the middle sections are ex-
changed to form the new members of the population.
Mutation randomly selects a chromosome to modify
and then randomly chooses a new value for that chro-
mosome.

The result of this genetic manipulation is that the
population tends to converge towards a local optimum
in the solution landscape; the convergence is exhibited
by the population containing a large number of the
same solution. If the mutation operation is disabled,
this convergence typically occurs quite rapidly; unfor-
tunately it is not possible to determine if this local
optimum is actually the global optima. The mutation
operator helps the GA find other (better) local opti-
mum by forcing some members of the population to lie
outside of the current local optimum.

The crossover operator moves the population in
small steps "uphill" (towards the closest local opti-
mum); the steeper the slope, the faster the population
as a whole converges. If the landscape is level, the
crossover and selection operators have no direction in
which to move the population, and convergence does
not occur.

Divide and Conquer
One of the classic paradigms in algorithm design and
analysis is divide and conquer. The concept is ele-
gant in its simplicity. In essence, a problem is solved
by designing an algorithm that is based on dividing the
problem into smaller instances of the problem and then
combining the results of the instances in order to ob-
tain the solution for the original problem. Below is the
skeletal structure of a divide and conquer algorithm:

ALGORITHM 0.1. DC (],n,O)

/*I = current problem instance,
n = problem size of I,
0 = output (solution) 

if n < c then
solve directly

else
Divide I into smaller instances I1, I2,... Ik
with problem sizes ha, n2, . . . n~ , resp.
Forj= l tok do
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Cal DC(Xj, nj,
Combine 01, 02, . . . Oh to compute O.

Denote the running time of DC for problem size n by
RDo(n). Denote the divide time of DC for problem
size n by Doc (n). Denote the combine time of DC for
problem size n by Coc (n).

Therefore, if n < c then RDc(n)=time to solve di-
rectly for size n. Else,

gl

Roc(n) = Doe(n) + Coc(n) + Roc(n 
j=l

Cache Diversity and Storage
Our goal is to cache partial results from the gene fitness
computations in order to reduce future fitness compu-
tation time. In particular, we observe that in GAs,
much of a gene is preserved through the various oper-
ations. Cloning, of course, is the ideal case where no
additional computations are required.

We denote AT(k) to be the time to access the cache
table to determine whether a particular substring of
size k resides in the cache, and if so, to access its partial
fitness value. We denote ST (k) to be the time to store
into the cache table a substring of size k. The notation
T refers to the cache table.

Assumptions and Results
We assume that the fitness function evaluation can be
represented by a divide and conquer strategy. There-
fore, obvious partial fitness computations to store in-
clude smaller problem instance results.

For the simple GA, we assume mutation and
crossover occur at only one point. By taking into
account caching, we modify the divide and conquer
scheme for the fitness function evaluation. The modi-
fication is presented below:

ALGORITHM 0.2. F (I, n, 0)
if n < c then

solve directly
else

if I is a clone then
output 0 directly

else
Divide I into smaller instances 11, I2,... Ij,
with problem sizes nl , n2, . . . nk, resp.
if I is a mutation then
x = point of mutation
For j = l to k do
if lj contains x then
Call F(t 

else
Oj ~ access(T, lj)



else
y and y + 1 = crossover points fi.e. crossover
occurs between y and y + 1)
For j = 1 to k do
if lj contains only points from
1..y or (y + 1)..n then

F(Is, ns, 05)
else
05 += access(T, Ij)

Combine 01,02,." Ok to compute 0

Note that this algorithm ensures cache hits at all
times. Furthermore, each cache store operation is per-
formed only once for each fitness computation. Ana-
lyzing the running time of F, we see that:

¯ if n < c then the time required is the time to solve
the instance directly. If n _> c then the following
cases below are utilized.

¯ if I is a clone,
RF(n) = 

where c~ is a constant representing the time to de-
termine the type of operation.

¯ if I is a mutation,

k

= DF(n) CF(n) + et +
5=1

where z is the mutation point, ca is a constant rep-
resenting the time needed to determine whether I5
contains x, and

f AT(ns) if I5 does not contain x
GIi (ns) RF(ns) otherwise

¯ if I is a crossover,

k

RF(n) = DF(n) + CF(n) + E(c~ + H/j (ns))
j=l

where y is the crossover point, cB is a constant rep-
resenting the time needed to determine whether lj
values only from 1 to y or only from y + 1 to n and

(AT(hi) if Ij contain values from
Hti (ns) 1 to y or from y + 1 to n

RF(ns) otherwise

Once each function is fully specified then a dosed
form for RF(n) can be derived.

The original (non-caching) run-time is obviously:

k

R°Fria(n) = DF(n) + CF(n) + E R~r"g(n5)

j=l

If RF(n) R°Frig(n) th en caching will pr oduce re-
suits more efficiently than non-caching.

Precise comparison/resuits can be done only after
the various functions in the equations are fidly speci-
fied. However, it is quite clear that in general, when
the access and storage time are comparable or less than
the divide and combine times, caching should be more
efficient than non-caching.

Analysis Example
We now take our analysis and apply it to the domain of
protein foldin 9. Currently, a primary concern in bio-
chemistry is the problem of protein native structure
prediction. It is commonly assumed that the sequence
of amino acids in the protein molecule corresponds to
the equilibrium minimum free energy state (the ther-
modynamic hypothesis) which might help to solve 
large number of pharmaceutical and biotechnological
problems. Therefore, several models have been pre-
sented for the protein folding problem. One of these is
the well-known 2D-HP model (Lau & Dill 1989). The
algorithms we presented here are all based on 2D-HP
model, that is:
¯ all the type of amino acids are represented by a set

A={H,P},
t protein instances are represented by a binary se-

quence,
¯ an energy formula specifying how the conformational

energy is computed by E = ~’~(e(a, b)), if a=b=H,
then e(a,b)=-l, otherwise e(a,b)=0, 

¯ the conformation structure is presented as a self-
avoiding walk on a 2D-lattice.

It has been proven that protein folding on the two-
dimensional HP model is NP-complete (Crescenzi et
al. 1998). Several methods have been presented to
try to solve this problem, such as the ch~|n growth
algorithm(Bornberg-Bauer 1997), fast protein folding
approximating algorithms (Hart & Istrail 1995), and
genetic algorithm(s) (Unger & Moult 1993).

A Caching Policy

We now describe a caching policy that can be appro-
priately used for the 2D-HP problem. Given the im-
portance of partial results for the divide and conquer
fitness computation, a traditional hash-table approach
is not appropriate for our simple GA. For example, in
one point crossover, if the crossover occurs at index
i, there is no need to recompute the partial fitness of
either the left or right portions of the new gene since
these computations have already been made for the
originating parent genes. Hence, it also becomes im-
portant to store the partially computed values. Fur-
thermore, since crossover can occur at any point, we

GENETIC ALGORITHMS109



would wish to retrieve substrings of the full gene as
well.

Our approach is to use a tree structure to maintain
our necessary gene caching. Given that the length of
our genes is n, our tree will be of height n where level i
in the tree will correspond to the ith index of the gene.
We call this tree the left-cache since the root of the tree
corresponds to the leftmost entry in each gene. Each
node in the tree has either n children ordered left-to-
right from 1 to n or is a leaf. Also, each node has a
key corresponding to the partial value computed for
the substring formed from indices 1 to h of the gene
where h is the level of the node starting at 1. The right-
cache is similarly constructed. A left-cache example is
shown in Figure 0.1.

The primary properties of the left/right-cache are:
¯ Size of cache is linear with respect to number of genes

stored.
¯ No collisions ever occur in the cache.
¯ Worst-case access and storage are O(n) for genes aa

well aa any prefix or suffix of these genes.
For this caching policy: AT(n) --- 4n and ST(n) 

6n.

Analysis

We can formulate the fitness computation for the 2D-
HP model aa a divide and conquer task on a grid which
can be achieved in linear time with careful design. The
gene can be layed out on this grid in a divide and con-
quer fashion such that the partial fitness computations
are achieved by computing a left substring (prefix) 
each gene and combined with the remaining right sub-
string (stttfLx). In other words, the divide and con-
quer algorithm relies on only one subinstance of size
nl >_ n/2. For the protein-folding problem PF for
non-caching, the expected run time is

R~’~g (n) ---- 104n.

Analyzing the caching algorithm, we see that:
¯ if I is a clone, RpF(n) = 

¯ if I is a mutation, Rpr(n) = 4 + 60n
¯ if I is a crossover, RpF (n) = 4 + 60n
The average time for caching is at most 4 + 60n. Di-
viding the two results, we get

4 + 60n 60
104--"-~ ~ ~ = 58%

improvement. As we can see, even for such a simple
fitness function, we can get significant improvement,
more than doubling the number of computations over
the same amount of time.
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Conclusion
We have provided a rigorous analysis of the benefits
of caching in genetic algorithms to reduce the time
necessary for fitness function computations. A cache
hit with at worst linear overhead eliminates the cost
of a fitness computation clearly resulting in significant
savings when the fitness computation time is a high-
degree polynomial. We demonstrated that even if the
fitness functions are linear in nature with regards to
their computations, caching can still have a significant
impact. In particular, we studied the 2D-HP Lattice
model for protein folding where caching can potentially
reduce the time for an individual fitness calculation by
nearly half. This directly translates to double in the
number of generations that can now be explored in the
same allotted amount of time for GAs without caching.
We believe that as long as a fitness function can be
reformulated in terms of divide and conquer, caching
will always improve efficiency. Future work we intend
to pursue would be to consider general dynamic pro-
gramming decompositions of fitness functions aa well
aa classes of caching policies¯
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