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Abstract 
                     A robotic agent must coordinate its 

coupled concurrent behaviors to produce a 
coherent response to stimuli. Reinforcement 
learning has been used extensively in 
coordinating sensing to acting of a single 
behavior and it has been shown useful in 
loosely coupled concurrent behaviors. We 
present a technique for applying Q values 
developed in learning individual behaviors 
for coordination among coupled concurrent 
behaviors. 

 
1  Introduction 
 
In psychology, it is argued that task execution can be 
divided into three successive stages of (a) perceiving 
the stimulus, (b) choosing the response, (c) and 
producing the response (Pashler, 1997). The strongest 
theory is that the second stage is the bottleneck for 
concurrent tasks. This means that the agent's sensory 
"attention" can operates in parallel. It is division of 
attention to concurrent behaviors that is difficult.  
 
          Consider a robot with multiple, concurrently 
active behaviors. Each behavior generates a desired 
response (i.e., an action) corresponding to the robot's 
sensory input. The responses from concurrent 
behaviors might contradict or conflict. For example, a 
robot with obstacle avoidance and wall following 
behaviors upon sensing a wall might generate a 
response to turn right and another response to turn left. 
If it executed both actions at the same time, it would 
end up with an inappropriate action of going straight. 
However, we might be able to blend the two actions in 
a differential manner. In contrast, consider a robot with 
a single camera that is used to follow a target object 
and to avoid obstacles, it may have conflicting gaze 
control responses to look ahead and look at the target. 
This example is usually considered to be a resource-
sharing problem and since usually the robot can switch 
its gaze back and forth, the solution is one of frequency 
of switching and time-sharing. We have addressed this 
resource-sharing problem with reinforcement learning 
(Hexmoor and Shapiro, 1997). The first example 
involves behaviors that are more closely coupled than 

the second and is the focus of this paper. For a survey 
article on behavior coordination see (Pirjanian, 1999). 
 
          Furthermore, consider that the robot is learning 
to improve its performance in each concurrent 
behavior using the standard reinforcement based 
learning known as Q learning. There is minimal 
domain knowledge in the concurrent behaviors and no 
direct information sharing among behaviors. We have 
developed a technique that uses Q values to resolve the 
contradiction between behaviors. As a behavior is 
learned, the robot responds with a very decisive choice 
for some sensory input making these inputs critical (or 
deterministic) and with a less decisive choice for some 
other sensory input making these inputs non-critical (or 
nondeterministic). When a set of inputs is critical for a 
behavior, we consider the behavior to be more 
important to the robot. This is as if that behavior 
deserves more attention from the robot. We can 
consider this situation as an influence that this 
behavior in its critical region possesses over other 
behaviors. Another way to think of this situation is a 
degree of subsumption from the behavior in its critical 
region over other concurrent behaviors. This 
subsumption degree can be used as an explicit measure 
to resolve contradictions in behavior output either as a 
cancellation of other behaviors or a differential 
activation level given to contradictory behaviors. 
 
          Our scenario is similar to considerations 
described in (Sen and Sekaran, 1998). They addressed 
multiagent coordination strategies using Q learning as 
well as genetic approaches. The competing actions 
belong to different agents instead of a single agent's 
concurrent behaviors.  Issues of coordination among 
different agents as Sen and Sekaran addressed, and 
behaviors within a single agent as we have addressed, 
are similar if we consider cooperative attitude among 
agents. Their work showed that prior or explicit 
information among agents was not needed to learn 
coordination. However, they reveal that when agent 
actions are strongly coupled, an individual learning is 
unable to produce effective coordination. In our 
approach behaviors are simultaneously learned using 
the Q learning algorithm. Each behavior is assigned its 
own reward scheme. Our introduction of suppression 
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rates among behaviors solves the coordination problem 
even in highly coupled behaviors.  
 
          Reinforcement based learning is used in the 
concurrent activities of robotic soccer (Asada, Uchibe, 
and Hosoda, 1999). This work uses a coordination 
discount factor that is multiplied to the Q values of 
separately learned behaviors when the behaviors are 
conflicting, which they call re-learning area. For an 
example, consider a robot that must simultaneously (a) 
shoot a ball into a goal area and (b) avoid collision 
with a goal keeper robot. Such a robot may learn either 
behavior separately, but when it can do both, the 
coordination factor will adjust the learned Q values to 
prevent interference between behaviors. In this case, 
shooting straight to the goal will not select if the ball 
can collide with the goalkeeper. A sub-optimal 
shooting will be produced that might still do the job. 
Instead of adjustments to individual Q values by 
coordination parameter, our approach implements a 
direct suppression between behaviors beyond the 
instantaneous Q value. Whereas their coordination 
factor is an interpolation of Q values within one 
behavior, our inter-behavior suppression rates 
implement direct impact of one behavior's Q standard 
deviation over another behavior. 
 
          There are neutral network approaches for 
sensory-motor coordination such as the work described 
in (Kuperstein, 1989) for coordinating hands and eyes 
in reaching elongated objects. This notion of 
coordination is association of senses with motor 
actions. The coordination is not between competing 
behaviors. As such this work compares to application 
of reinforcement based learning to individual 
behaviors. 
 
          A learning algorithm that accounts for reliability 
and relevance of behaviors is presented in (Maes and 
Brooks, 1991). This algorithm coordinates leg 
movement of a six-legged robot called Genghis. 
Relevance is the difference between reward correlation 
and punishment correlation. Correlation is the Pearson 
product-moment correlation coefficient of frequencies 
of receiving reward and punishment. This algorithm 
has worked wonderfully with Genghis but the 
behaviors were treated as on-off signals of separate leg 
movements. Our behaviors allow a choice of actions 
and for each behavior we compute influence over other 
behaviors. 
 
 
2   The algorithm 
 
Our robots run the following steps (shown in the box) 
in an infinite loop. 
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1. Determine the current set of concurrent 
behaviors 
2. Determine the current state of the world 
3. Match the current state with behavior 
preconditions and select an action for each 
concurrent behavior for execution 
   3a. α percent of time pick the action with highest 
Q value 
   3b. (1-α) percent of time pick a random action 
   3c. Fully execute the action of the behavior with 
the highest influence (the standard deviation among 
actions of this behavior is larger than 60%-- This is 
a parameter) but suppress (i.e., do not execute) 
actions of other behaviors 
4. Decay the impact of actions from the previous 
cycle 
5. Compute rewards for Q learning 
6. Q learn each behavior individually 
7. Determine the instantaneous inter-behavior 
influences for coordination 
8. If there is state action deviation, increase the 
percentage α, else reduce α toward its initial level 
9. Update values for next cycle 
10. Compute system performance: ignoring 
navigation in no conflict zones, record the standard 
deviation of conflicting simultaneous actions issued 
by concurrent behaviors 
          
          The system operates very much like a forward 
ranching production system, matching current state 
which reflects the content of working memory) with 
he behaviors, which are implemented as sets of 
roductions. Each production in a behavior has 
reconditions, which are states of the world, and a 
isjunction of actions that can be selected for 
xecution. Only one action is selected per behavior at 
ach cycle. I.e., Each behavior can produce one of 
everal actions and it will be the comparison of the Q 
alues developed by Q learning (our machine learning 
echnique) to pick the best action. Each action of a 
ehavior has a Q value, which is its suitability. Q 
alues are set at an initial level and are updated using 
 learning. I will not explain Q learning. There are 
any good sources for this, such as (Whitehead, 

991). We set our parameter λ to 0.25 and γ to 0.75 for 
 learning. 

         In the tradition of other reinforcement-based 
earning systems, conflict resolution among potential 
ctions of a behavior, the action with the highest Q 
alue is preferred most of the time (α in the 
lgorithm). The rest of the time (1 - α), we pick an 
ction randomly so we experiment with actions that 
ay turn out to be successful and earn high Q values.  

         State Action Deviation (SAD) is when the robot 
erforms an action but the next state is the same as the 



current state. This can be due to conflict in concurrent 
actions or due to inefficacy of actions. For example, 
the robot can try to turn left and right by the same 
amount simultaneously, canceling the effect. We 
initially set our experimentation level at 10% (1 - α in 
the algorithm) and when SAD is higher than one, 
increment of this value. When SAD is reduced, we also 
reduce the experimentation level.  
 
          In order to produce smooth actions, our system 
remembers actions from the previous cycle and decays 
their effect (to about 10%), which is added to the 
current actions. 
  
          The performance of coordination is measured as 
the standard deviation of degrees of turn among 
actions that are issued simultaneously by concurrent 
behaviors. We only measure this value when the 
behaviors are both active and produce an action. For 
instance, if only one concurrent behavior produces an 
action, there is no possibility of conflict, and it is not 
counted in our performance measurement. 
 
3   Experiments and results 
 
We developed a Nomad mobile robot experiment with 
two behaviors. The first behavior implements 
wandering and obstacle avoidance. Our Nomad robot 
has 16 sonars, arranged on the robot circumference and 
22.5 degrees apart. The robot uses its front 7 sonar 
sensors, spanning 135 degrees in front of the robot to 
detect obstacles. If it detects obstacles it is allowed to 
choose one of seven actions: to go straight, or to turn 
10, 25, or 60 degrees in either left or right direction. If 
there are no obstacles, it may go straight or pick one of 
its six turn actions in random. These 7 actions are the 
only actions available to our robot. 
 
          To be specific, for the first behavior we have 7 
productions, each corresponding to detecting an 
obstacle by a sonar in the near range. There are three 
other productions corresponding to very close 
obstacles seen from the front 3 sonars. One last 
production corresponds to the situation that all sonar 
values report obstacles far away. We have a total of 11 
productions. The possible choice of actions in each 
production is the 7 actions available. There are an 
additional 4 productions for the first behavior 
corresponding to the 4 sonars furthest of 11 front 
sonars from front, but the behavior produces a no-op, 
so they are ineffective. 
 
          The second behavior implements wall following. 
The robot uses its front 11 sonars spanning 247.5 
degrees in front of the robot to detect a wall, align, and 

move along a wall. It detects a wall from its front 5 
sonars, it randomly chooses 10 degrees turn in either 
direction or goes straight. If it senses the wall from its 
6 lateral sonars (3 on either side), it chooses randomly 
from its 7 possible actions. We have 11 productions for 
this behavior. 
 
         The Q value of all actions in all productions is set 
to zero at the start. As it is evident, the initial 
knowledge of these behaviors is negligible, i.e., these 
behaviors are not optimized for the tasks. The first 
behavior will receive a reward of 1.0 if the robot does 
not see an obstacle and -1.0 when it senses an obstacle 
very close from the front three sonars. The second 
behavior will receive a 1.0 when it senses a wall from 
either of its two sonars at 90 degrees from the front. 
Similar to the first behavior, it receives -1.0 when it 
senses an obstacle very close in the front three sonars. 
 
          We ran two versions of these two robot 
concurrent behaviors in a simulated room while each 
behavior is improved with Q learning. Figure 1 shows 
a trace of a run of this robot in a room. 

Figure 1. Sample run of concurrent behaviors for 500 
cycles. For about 120 cycles, the robot is close to the wall 

and there is serious conflict between obstacle avoidance and 
wall following. 

 
          First we allowed the behaviors to compete 
without any explicit suppression between behaviors. 
Second, we computed the standard deviation in Q 



values of each production in each behavior to 
determine a degree of suppression on the action 
suggested by the competing behavior. The result is that 
in the second version, conflict between behaviors was 
reduced more quickly. The darker traced areas in 
Figure 1 show that the robot struggled with conflicting 
behaviors and dwelled in the area.  The lighter traced 
areas in Figure 1 show that the robot has resolved 
some conflicts (after learning for some time) and 
dwells less in those areas.  
 

 
Figure 2. Conflict resolution over time. The higher curve 

(series 1) belongs to reinforcement learning only. The lower 
curve (series 2) shows the effect of explicit suppression in 

addition to reinforcement learning. 
 
          Figure 2 shows the standard deviation of turning 
actions being produced over time. What is shown is 
120 cycles of the run where there the robot was near 
the wall and there was a direct conflict between 
behaviors. The points on the graph are the sums of 
values over the last 10 steps. We see that 
reinforcement learning of behaviors had an overall 
improvement on conflict resolution. We also see that 
explicit suppressions enhanced the reduction of 
conflict resolution. Neither method completely 
eliminated conflict. 
 
4   Conclusion 
 
This paper presents a direct method of conflict 
reduction among closely coupled concurrent behaviors. 
The method uses the Q values developed during Q 
learning of each concurrent individual behavior. The 
effect is complimentary to reinforcement-based 
learning of individual behaviors. 
 
          We plan to explore the limits of our technique 
for conflict resolution among other examples of closely 
coupled concurrent behaviors.  
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