
Copyright © 2000, American Association for Artificial Intelligence

(www.aaai.org). All rights reserved

Domain Semantics for Agent-Oriented Programming
Roger Norton and Rebecca Thomas
School of Computer Science and Mathematics

Marist College

Poughkeepsie, NY 12601-1387

Roger.Norton@Marist.edu

Abstract

This paper describes a novel semantic framework for an

agent architecture. Drawing on Shoham’s work on

AGENT0 (Shoham 1993), we replace Shoham’s modal

logic semantics with a new framework based on category

theory. In particular, we use a consistently complete ω-

algebraic complete partial order as our semantic structure,

and briefly explore the consequences of this choice.

Most importantly, we can now speak about the dynamic

evolution of an agent’s mental state, while Shoham’s

original work could only model the static mental state.

1. Introduction

Much recent work has been devoted to the study of agents

(Rao & Georgeff 1991, Wooldridge & Jennings 1994,

Wooldridge, M�ller, & Tambe 1995, Wooldridge & Rao

1999), and in particular to modeling the internal states of

these agents. These internal states should allow for the

recording of the information necessary for the agent in its

mundane operations. This information will typically

include

• information about the world and other agents, modeled

as an agent's beliefs

• information about which actions are available to the

agent, modeled as the agent's capabilities

• information about what the agent's actions are meant

to accomplish, modeled variously as the agent's plans,
intentions, commitments or goals

This paper reworks the agent model presented in

(Shoham 1993), which presents both a high-level model of

agent-oriented programming (AOP) and a simple AOP

language, called AGENT0. AGENT0 agents have beliefs,

abilities to perform actions (which may be relative to what

is true in the world), and commitments made to other

agents or to themselves concerning actions to be taken at

particular future times. Unlike Shoham's original

formulation, which used a standard modal logic semantics,

this new formalization uses domain theory to provide the

semantic basis for the AGENT0 language.

We believe that it will be productive to move from a

modal logic-based semantic framework to a domain-

theoretic framework for agent modeling because of the

greater generality afforded by this new framework. By the

nature of the standard possible-worlds semantics for modal

logics, agent models that use these logics suffer from well-

known problems, most importantly the problem of logical

omniscience. In addition, Shoham’s original work and the

later work of others, e.g. (Thomas 1993, Thomas 1999),

modeled only the static mental state of agents. The

dynamic evolution of an agent’s mental state was

prescribed by the agent’s program, but no formal model of

this evolution was given as part of the work on AOP.

This paper may frustrate mathematicians, since we are

not breaking new ground in category theory. It may

frustrate researchers in artificial intelligence, since the use of

category theory allows great generality of results. We

believe, however, that category theory can usefully be

applied to the problem of specifying agent semantics, and

that the semantic framework so derived has real advantages

over the more standard models.

2. Review of AGENT0

In the AGENT0 AOP scheme, the mental states of agents

consist of beliefs, abilities, obligations, and decisions.

The beliefs are typical of most agent models; they represent

the information that an agent has available for its

reasoning. Abilities, in AGENT0, refer to facts, rather

than to actions. The intuition is that an action will make

some fact true, and that typically that is the point of the

action. These abilities may be conditional on certain facts

about the world; for example, an agent may be capable of

opening a door if that door is unlocked, and not otherwise.

(AGENT0 also introduces the notion of a primitive action,

an action which cannot be broken down into component

piece.) Obligations, which were called commitments in

earlier versions of AGENT0, are essentially promises made

to some agent that some fact will be made true. Decisions

(earlier called choices) are simply obligations to oneself.

An AGENT0 program specifies (1) the (unchanging) set

of capabilities of the agent, (2) the initial beliefs of that

agent, and (3) a set of commitment rules, which specify the

conditions under which the agent should make new

commitments. The commitment rules specify a condition

which must be true of the agent’s mental state, and a

condition which must be true of some newly-received

message. If both conditions are met, then the obligation(s)

listed in the rule are all established and must be carried out

by the agent.

From: FLAIRS-00 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved.

.

In our model, we have made some minor changes. We

have replaced the idea of obligations with non-social

commitments, that is, with commitments that are not

made to any particular agent. (While it is useful to have

social commitments, we are confident that only a small

change will be required to our model to incorporate this

notion.) We divide commitments into two types, simple

commitments, in which an agent agrees to establish some

fact at a given time, and conditional commitments, in

which the agent agrees that it will establish the given fact

at the given time if some condition is then true. For

example, our agent may promise to open the door to the

seminar room at 3:00pm, if the door is then unlocked.

3. Intuitive example

While the mathematics underlying our model will be

presented in detail below, it seems appropriate to give

some intuitive description in order to illustrate our

approach.

We model our agent’s mental state with a collection of

elements, which are arranged to form a complete partial

order (see Figure 1). Each element is a potential belief

state of the agent; that is, it can be seen as a collection of

facts. Some elements of the partial order correspond to

messages received by the agent; the contents of a message

can be seen as a collection of facts. One element is singled

out as the initial belief state of the agent. Whenever the

agent receives a message, it moves to a new belief state.

This new belief state is found by taking the least upper

bound of the current belief state and the just-received

message, subject to consistency constraints.

In Figure 1, let the initial belief state be [X]. If the

agent receives a message with content [Y], its new belief

state will be the least upper bound of [X] and [Y], which is

in this case [X.Y]. Should the agent next receive the

message [X], its new belief state will remain [X.Y].

Thus this diagram captures the evolution of the agent’s

beliefs in response to messages it might receive.

Let us examine another possible set of elements, which

will give us different results. Figure 2 shows the mental

state of a nonlearning agent. Starting from belief state "⊥ "

this agent can learn one thing. Any further learning will

put it into an inconsistent state.

Obviously, both Figure 1 and Figure 2 describe very

simple agents. This same framework is very general and

can capture many different styles of agent reasoning.

4. A Mathematical Structure for Defining the
Semantics of Agents

When investigating what mathematical structure would be

appropriate to model both the static and dynamic nature of

an agent we initially tried utilizing Kripke diagrams.

These proved to be adequate for modeling the static nature

of an agent but we had difficulty in dealing with the

agent’s dynamic nature. We briefly investigated Montague

semantics, which avoid some problems of Kripke models

by weakening the assumed reasoning power of agents, but

found them equally problematic in terms of representing

the dynamic mental state. We next turned to category

theory, specifically to a fairly general category that is often

used in semantic models, namely a Cartesian closed

category (MacLane 1971). This proved to be adequate to

model both the static and dynamic nature but had the

disadvantage of being too general. There were aspects of a

Cartesian closed category that did not correspond to any

characteristic of an agent within our denotation. We next

honed in on what aspects of these categories were in fact

needed for our model to work. What we concluded was

that a form of a Scott Domain (Scott 1982), namely, a

consistently complete ω-algebraic complete partial order,

henceforth called simply a domain, was what was needed.

Before we proceed with the details of our model, let us

first enumerate a few of the properties of the category of

domains that will play a prominent role in our model:

1. this category is in fact Cartesian closed and so

terminal elements, products, and function types
are available.

2. the function U:DxD→D, which maps two elements

to their least upper bound, is continuous.

S

¬X.
Y

X.
Y

¬X.¬
Y

X.¬
Y

z

X Y ¬X ¬Y

Figure 1

S

z

¬X.
Y

X.
Y

¬X.¬
Y

X.¬
YX Y ¬X ¬Y

Figure 2

.

3. every domain D contains a set of elements fin(D),

called the finite elements, which satisfy the

property that if x∈ fin(D), M⊆ D is a directed set,

and x≤UM, then x≤y for some y∈ M. (Winskel &

Larsen 1984)

4. for each element x∈ D we define ↑x = {a∈ fin(D) |

a≤x} and have that ↑x is directed and U(↑x) = x,

so in fact a domain is determined by its finite

elements.

5. Given a function f:fin(D)→D that is monotonic, it

can always be extended to a function f^
:D→D that

is continuous. This tells us that continuous

functions are completely characterized by their

actions on the finite elements.

6. Each domain D has a bottom element ⊥ . We will

also require the existence of a top element SSSS.

4.1 The Semantic Domains of Agents

In order to define our model we will need to introduce the

following domains:

• Time T = N∞ , which is the domain of natural numbers

with an element ∞ attached to the top of the order, or

T = n, which is the domain of natural numbers up to

and including n. On each of these domains is defined

a continuous function next: T→ T which maps each

element to the next element in the partial order.
1

• Domain of Discourse D. This domain models the

world of all the agents and will usually be, but not

required to be, defined using a predicate logic over a

basis in which the ordering is based on implication.

Each element φ in this domain would probably be a

consistently complete set of predicates with φ≤ϕ iff all

models of φ are also models of ϕ.

• Negation. ¬ : D→D, an idempotent operator

satisfying U(¬ φ,φ) = SSSS .
• Abilities Aa ⊆ D. These domains, one for each agent,

will be subdomains of the domain D and represent the

abilities of an individual agent. Since the abilities of

individual agents differ, we cannot utilize D to model

the abilities of all agents. (Note that we follow

Shoham in defining abilities to relate to facts rather

than actions.)

• Primitives Pa= fin(Aa). The primitives correspond

to the primitive actions (facts) associated with a

1
 . We have investigated models which included more

complex domains of time which would allow for each

agent to function on a different time scale Ta. This would

require the existence of a functor Fab:Ta àTb , for pairs of

agents a and b. We do not discuss this more elaborate

model of time in this paper.

particular agent. All abilities in Aa are determined by

these primitives as discussed in (4) above.

• Beliefs Ba :T→Aa, correspond to the beliefs of an

agent represented as a continuous function of time.

Since continuous functions are monotonic, Ba will be

monotonic with respect to the ordering on T and Aa.

This function captures a part of the dynamic nature of

an agent.

• Simple Commitments Sa: T→Aa. These are the

commitments that an agent has made represented as a

continuous function of time.

• Conditional Commitments Ca: T→(Pa →Aa).

These are the conditional commitments that an agent

has made represented as a continuous function of time.

The condition associated with a conditional

commitment must be a primitive.

4.2 The Semantic Functions

Initialization: When an agent is specified, an

initialization element φ ∈ Aa is given. This element

specifies the initial beliefs of the agent and thus defines an

initial value for Ba given by the formula Ba (t) = φ for all

t∈ T2
. Also specified at this time are a finite number of

initial commitments, both simple and conditional. These

result in initial values for the functions Sa and Ca with the

restrictions Sa(t)=Sa(next(t)) for t≥t0 for some t0∈ T and

Ca(t)=Ca(next(t)) for t≥t1 for some t1∈ Ta. This condition

ensures that only a finite number of commitments were

made at initialization.

Effects of Commitments on Beliefs: As time passes, an

agent’s beliefs changes based upon information it receives

from other agents, and based upon commitments made by

the agent to itself and to other agents. These

commitments also cause actions to be performed by the

agent as a result of “side effects”.

The changes in the beliefs of an agent due to its simple

commitments at time next(t), where t∈ T, is described by

the formula

Ba(next(t)) = Ba(t)USa(t).

This formula correspond to the following commutative

diagram:

T next T

 B a xS a B a

 Aa x Aa U Aa

2
 Since Ba is required to be continuous, and thus

monotonic, we cannot simply define Ba(0)=φ.

.

In the case where our domain corresponds to some

predicate logic, the above asserts that at time next(t), what

we believe is what we believed at time t anded with what

we were committed to believe at time t. These changes

also result in primitive actions being performed by the

agent. We specify these actions as side effects of the

primitive elements in our domains. Thus at time next(t)
an agent performs the actions:

{Do p ∈ Pa | p ≤ Sa(t) & p % Ba(t) }

Thus, if an agent commits to believing at time t that it has

just performed the open-door action, then at time t it will

add such a belief to its knowledge base and will perform

the open-door action, unless the door is open already.

Similarly, the changes in the beliefs of an agent due to

its conditional commitments at time next(t), where t∈ T, is

described by the formula

Ba(next(t)) = Ba(t)UCa(t)(Ba(t)).

Note here that the commitments that are acted upon are the

ones determined by both the time t and the current beliefs

Ba(t). This formula corresponds to the following

commutative diagram:

T next T

 Ba x Ca x Ba B a

Aax(Aa→Aa)xAa A axA a A a

 id x apply U

These changes cause the following primitive actions to be

performed by the agent

{Do p ∈ Pa | p ≤ Ca(t)(Ba(t)) & p % Ba(t)} .

Incoming Messages: When a message is sent to an agent

it will be intercepted by the system interface and converted

to an appropriate form for processing by the agent. The

messages that are received are of two forms: Informational
and Requests.

Informational messages are simply informing agenta of

some fact φ. The agent will then, depending on the time

t0 when the message is received, adjust its beliefs

accordingly. This adjustment is represented by the

formula

Ba(t) = Ba(t)Uφ for t ≥ t0.

Requests are messages requesting agenta to commit to

some fact φ at a time t0. This request may be conditional

on some primitive fact p being true at the time. Again the

system interface intercepts these messages and converts

them to an appropriate form for processing by the agent. In

the case of a simple request (t0, φ) the adjustment is

represented by the formula

Sa(t) = Sa(t)Uφ for t ≥ t0,

and for a conditional request (t0, (p, φ)) the adjustment is

represented by the formula

Ca(t) = Ca(t)Uf^
(p,φ) for t ≥ t0,

where we have f(p,φ): Pa→ Aa is defined by

 φ for q ≥ p.

f(p,φ)(q) =

⊥ otherwise.

The function f^
(p,φ): Aa→ Aa is the continuous extension of

f(p,φ): Pa→ Aa that was discussed in (5) above.

Informational Relevancy: In the scenario described above

an agent did not examine the content of a fact φ to insure

that its content was relevant to the domain of the agent.

This scenario thus assumes that each agent knows the

abilities of the other agents, or at least the ones for which it

is interested in communicating with. If an agent does not

know about the abilities of another agent, it really has no

vocabulary for even representing any information about

these unknown abilities. In such cases, we can always

adjust any incoming messages to fit within the domain of

abilities of the particular agent. So for example, if agent a
receives a fact φ from agentb, the system can then pass on

to the agenta simply the fact φ’ = U{p ∈ Pa | p ∈ ↑φ},

which of course may simply be ⊥ .

Beliefs: In our world of agents we are interested in what

our agents “believe” at some time t. This of course is

determined by investigating Ba(t) . To determine whether

agenta believes fact φ at time t, we simply determine if

φ ≤ Ba(t). If it is, we say that agenta believes φ at time t
and write Ba(t)(φ). Since we require that U (¬ φ, φ) = S, if

agenta believes both ¬ φ and φ at time t, then agenta

believes S and thus believes all things. We will refer to

this as agenta being in a state of inconsistency. What

about the question of what agenta does not believe?

Definition: We define ¬Ba :T→PowerSet(Pa) where

¬Ba(t) = {p ∈ Pa | p ∉ Ba(t) }. We then say that agenta

does not believe fact φ at time t iff (↑φ ∩ ¬Ba(t)) ≠ ∅
and will write ¬Ba(t)(φ).

Lemma: If agenta is in a consistent state, then we have

that Ba(t)(¬ φ) implies that ¬Ba(t)(φ).

Consistency. We have not imposed any consistency

constraints on our agents’ beliefs. Thus it is possible for

an agent to believe both φ and ¬ φ, and hence be in a state

of inconsistency. This may be an undesirable situation.

We can however, easily remedy this by imposing a few

consistency constraints. For instance we can impose

1. Any initialization element φ be consistent, so φ ≠ S.

2. For commitments we would have

Ba(t)USa(t) if Ba(t)USa(t) ≠ S

.

Ba(next(t)) =

Ba(t) otherwise

3. For conditional commitments we would have

 Ba(t)UCa(t)(Ba(t)) if Ba(t)UCa(t)(Ba(t)) ≠ S

Ba(next(t)) =

 Ba(t) otherwise

We could similarly impose consistency constraints on the

incoming messages processed by our agent.

5. Example

Let us present an example in which an agent is to find its

way out of a maze. The agent will be programmed to use

the algorithm in which it figuratively places its right hand

on the wall and moves in such a way as to keep contact

with the wall at all times. That is, if the agent can turn

right, it will; if it cannot turn right but can go straight, it

will. If it cannot turn right or go straight but can turn left,

it will, and if it can do none of these things, it will turn

around and return to its previous position (but now facing

the other way).

We will model this example using a modus ponens

domain. In this structure, we have a set of predicates. We

will not need conjunction or disjunction for this example,

but we will need implication. An element of the domain

is just a set of well-formed formulas (wffs), where each wff

is either a predicate or an implication.

We’ll assume that our agent has sensors that allow it to

recognize whether there is a wall in front of it, on its left,

on its right, and behind it. We will encode this

information using a 5-ary state predicate S(R, F, L, B, T).

The first four terms of the predicate are Boolean; they are 1

if there is a wall respectively to the right of, in front of, to

the left of, or behind the agent. The final term, T, is a

time. So S(1,0,0,1,15) will be interpreted to mean that at

time 15, the agent had walls to its right and behind it, but

not to its left or in front of it. We will have four more

predicates: MR(T) means that the agent turns to its right

and moves one unit forward at time T. Similarly,

MF(T1), ML(T2), and MB(T3) mean that the agent moves

forward, left, and back at the given times. These predicates

have side effects; if the agent adopts a belief in, say, MR(T)

then it will execute the corresponding action at time T.

(Note that the agent can only adopt this belief if it is

consistent with the agent’s other beliefs.)

Given this language, we can write rules that will allow

the agent to execute the algorithm described above. Note

that although our language for this example does not allow

quantifiers, we will use them as an abbreviation. In fact,

each element in the domain will have an infinite number of

implication instances corresponding to each rule given

here.

∀ X,Y,Z,T Ba (T)(S(0,X,Y,Z,T)) ⇒ MR(T)

∀ Y,Z,T Ba (T)(S(1,0,Y,Z,T)) ⇒ MF(T)

∀ Z,T Ba (T)(S(1,1,0,Z,T)) ⇒ ML(T)

∀ T Ba (T)(S(1,1,1,0,T)) ⇒ MB(T)

Of course, our semantic framework is more general than

the maze example demonstrates. As a second example, we

present the standard nonmonotonic reasoning problem

concerning whether Tweety the bird can or cannot fly. We

can draw a simple domain for this reasoning problem; see

Figure 3.

The initialization element for this example is

{bird(Tweety)→flies(Tweety), dead(Tweety)→
¬ flies(Tweety)}; these are the only things the agent

believes when it first begins operation. Note that the →
symbol now represents defeasible implication. Should it

now learn that Tweety is a bird, it will conclude that

Tweety can fly. If instead it learns that Tweety is dead, it

will conclude that Tweety cannot fly. Should it learn that

Tweety is both dead and a bird, it will still conclude that

Tweety cannot fly, regardless of the order in which it learns

these two facts.

6. Discussion

As a result of the semantic structure given above, an

agent’s beliefs can change through receiving messages and

through side effects of commitments and conditional

commitments. It may seem unintuitive that an agent

should be able to make a commitment to believe

something in the future. Often, however, the agent will

make a commitment to believe that it took some action at

a given time; as a side effect, then, the agent will take the

action. The agent may have information about the effects

of its actions, but it need not conclude that its actions are

S

z
Figure 3

bird(Tweety), dead(Tweety),

¬ flies(Tweety)

bird(Tweety)→flies(Tweety)

de d(Tweety)→ flies(Tweety)

bird(Tweety), flies(Tweety)

bird(Tweety)→flies(Tweety)

dead(Tweety)→
¬ flies(Tweety)

dead(Tweety), ¬ flies(Tweety)

bird(Tweety)→flies(Tweety)

dead(Tweety)→ ¬ flies(Tweety)

bird(Tweety) bird(Tweety)→flies(Tweety)

dead(Tweety)→
¬ flies(Tweety)

dead(Tweety)

.

always successful. For example, an agent program may

specify that an agent commit to believing at 4:00pm that at

3:59pm it performed an open-door action on the door of the

seminar room. Its program may further specify that it

should always believe that such an action entails the door

being open afterward, or its program may instead specify

that once the action is performed, the agent should adopt a

belief that the door is open only if its sensors confirm that

fact. Either approach is consistent with the AOP

paradigm, since Shoham purposely did not specify how

agents should reason about the results of their actions.

AOP was intended to be a very general approach to

programming agents. We believe that we have further

generalized the approach by replacing the Kripke-style

semantic structures used by Shoham (Shoham 1993) and

Thomas (Thomas 1993, Thomas 1999) with a Scott

Domain. Within this framework, the user is free to specify

that an agent should be a perfect reasoner, but the user is

equally free to specify that an agent is incapable of

reasoning at all, or can perform only certain kinds of

reasoning. Such reasoning abilities are encoded in the

structure of the domain, specifically in the elements and the

function U (which maps two elements to their least upper

bound).

7. Future Work

In this paper we have introduced two fairly conventional

forms of commitments, namely Sa: T→Aa and Ca: T→(Aa

→Aa). However, due to the fact that our category of

domains is Cartesian closed, we can easily introduce more

complex versions of commitments. For instance we could

define a recursive form of commitment that would allow us

to commit to at time t0 to commit to at time t1 to believe

in fact φ. This could be accomplished by defining a

domain of high level commitments Ha = Sa + Ca + Ha. In

our current investigations we are exploring these high level

commitments as well as investigating the use of a more

complex domain of time Ta.

One problem with our model as it stands is that we have

not discussed nested belief operators; that is, we have no

way of representing what an agent believes about its own

beliefs or the beliefs of other agents. Such nesting of belief

operators is crucial in many domains, and we are currently

investigating extensions to our work that will allow such

nesting.

References

(Apt 1981) Apt, K.R. “Ten Years of Hoare's Logic: A

Survey --Part I,” ACM Transactions on Programming
Languages and Systems, 3: 4, ACM, 1981.

(Attardi & Simi 1981) Attardi, A. and Simi, M.

“Semantics of Inheritance and Attributes in the Description

System Omega,” MIT A.I. Memo 642, 1981.

(Cardelli 1988) Cardelli, L. “A Semantics of Multiple

Inheritance,” Information and Computation, number 76,

pages 138-164. Academic Press, 1988.

(Goguen et al, 1973) Goguen, J. A., Thatcher, J. W.,

Wagner, E. G., and Wright, J. “A Junction Between

Computer Science and Category Theory, I: Basic Concepts

and Example(Part I).” IBM Research Report, 1973.

(Goguen et al, 1976) Goguen, J. A., Thatcher, J. W.,

Wagner, E. G., and Wright, J. “An Introduction to

Categories, Algebraic Theories, and Algebras.” IBM

Research Report, 1976.

(Goguen et al, 1977) Goguen, J. A., Thatcher, J. W.,

Wagner, E. G., and Wright, J. “A Junction Between

Computer Science and Category Theory, I: Basic Concepts

and Example(Part II).” IBM Research Report, 1977.

(Hoare 1969) Hoare, C. A. R. “An Axiomatic Basic for

Computer Programming,” Communications of the ACM,

12:10, 1969.

(Liskov & Guttag 1986) Liskov, B. H. and Guttag, J.

Abstraction and Specification in Program Development,
MIT Press, Cambridge, 1986.

(MacLane 1971) Mac Lane, S. Categories for the Working
Mathematician, Graduate Texts in Mathematics, Springer-

Verlag, New York, 1971.

(Norton 1987) Norton, R. L. “Information Systems as

Implementations,” Proceedings of the 15th Annual

Computer Science Conference , St. Louis, Missouri, 1987.

(Norton 1989) Norton, R. L. “Predicate Transformers as

Homomorphisms on Scott's Information Systems,”

Proceedings of the 17th Annual Computer Science

Conference , Louisville, Kentucky, 1989.

(Norton 1991) Norton, R. L. “A Categorical Treatment of

Classes in an Object-Oriented Language,” Marist Working

Papers , V.7, 1991.

(Norton 1991) Norton, R. L. “A Categorical Treatment of

Classes and Multiple Inheritance in an Object-Oriented

Programming Language,” Dissertation, Syracuse

University, 1991.

(Rao & Georgeff 1991) Rao, A. S., and Georgeff, M. P.

“Modeling rational agents within a BDI-architecture”. In

J. Allen, R. Fikes, and E. Sandewall, eds , Principles of

Knowledge Representation and Reasoning: Proceedings of

the Second International Conference , pp. 473-484, 1991.

.

(Scott 1982) Scott, D. S. “Domains for Denotational

Semantics,” in M. Nielsen and E. M. Schmidt, eds.,

International Colloquium on Automata, Languages and

Programs , Volume 140 of Lecture Notes in Computer

Science, Springer, 1982.

(Shoham 1993) Shoham, Y. “Agent-oriented

programming,” Artificial Intelligence, 60(1):51-92, 1993.

(Thomas 1993) Thomas, S. R., PLACA, An Agent

Oriented Programming Language . Ph.D. Thesis, Stanford

University, 1993. Available as Stanford University

Computer Science Department Technical Report STAN-

CS-93-1387.

(Thomas 1999) Thomas, S. R., “A Survey of Agent-

Oriented Programming,” in M. Wooldridge and A. Rao,

eds, Foundations of Rational Agency , Volume 14 of

Applied Logic Series, Kluwer Academic Publishers,

pp.263-274, 1999.

(Wagner 1981) Wagner, E. G. “Lecture Notes on the

Algebraic Specification of Data Types'“, Proceedings of the

Seventh National School for Young Scientists , 1981.

(Winskel & Larsen 1984) Winskel, G. and Larsen, K. G.

“Using Information Systems to Solve Recursive Domain

Equations Effectively,” Technical Report, University of

Cambridge Laboratory, 1984.

(Wooldridge & Jennings 1994) Wooldridge, M. J., and

Jennings, N. R., eds., Intelligent Agents: ECAI-94

Workshop on Agent Theories, Architectures, and

Languages , Volume 890 of Lecture Notes in Artificial

Intelligence, Springer-Verlag, 1994.

(Wooldridge, M�ller, & Tambe 1995) Wooldridge, M. J.,

M�ller, J. P., and Tambe, M., eds., Intelligent Agents II:

Agent Theories, Architectures, and Languages , Volume

1037 of Lecture Notes in Artificial Intelligence, Springer-

Verlag, 1995.

(Wooldridge & Rao 1999) Wooldridge, M., and Rao, A.,

eds., Foundations of Rational Agency, Volume 14 of

Applied Logic Series, Kluwer Academic Publishers, 1999.

