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Abstract

Knowledge management has been claimed as the cor-
rect response to rapid change. Decisions need to be
made in light of up to date knowledge. The chang-
ing nature of the knowledge raises issues of quality as-
sessment and monitoring. In this paper, we motivate
the need for system monitoring of knowledge quality
and present a set of structural properties that promote
knowledge consistency. We briefly discuss system mon-
itoring of these properties.

Introduction

Knowledge Management has emerged in the past few
years as a reflection of the wide recognition of knowl-
edge as a critical resource and on the subsequent de-
sire to capture, grow, share, and use the organizational
know-how. Because knowledge management is still in
its youth, almost all of its aspects are still the sub-
ject of extensive research and wide experimentation.
These aspects range from the economic considerations
of valuation and return on investment, to the manage-
rial aspects of resource allocation and management, to
the technical aspects of identifying, encoding, and us-
ing the knowledge (see e.g. (3; 15; 8; 22; 26; 27; 31;
35).) The knowledge targeted by these efforts ranges
from the informal multimedia information found on the
web (e.g. see (2; 29)), to factual time-varying data, 
more formal standards, best practices, and regulations
(e.g. see (17; 24; 28).)

One of the major and often cited motivators hehind
the knowledge management movement is the need for
organizations to rapidly recognize changes and capital-
ize on them. It is argued that while the information
technology age had focussed on offering pre-canned ef-
ficient solutions to pre-defined problems, what organi-
zations now need are means for "adaptation and sur-
vival in face of increasingly discontinuous change" (18).
Knowledge management is presented as the answer to
this rapid change and is defined as the organizational
process of collecting, managing, and integrating up-to-
date knowledge in its decision-making processes. By
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adopting a knowledge management approach, organiza-
tional decisions become less dependant on the specific
tools used and more dependant on the quality of the
knowledge used. Because the knowledge is evolving, its
quality is not necessarily invariant. It does not suffice to
validate the knowledge once; the quality needs, instead,
to be continuously monitored.

In this paper, we discuss the issue of knowledge qual-
ity in the context of engineering design support sys-
tems. Engineering design is a knowledge intensive ac-
tivity that is bound by a large number of requirements,
standards, and regulations. The different standards and
regulations are set and updated by different bodies and
they are all integrated in the process of supporting de-
sign engineers’ decision making. Because the pace of
technology evolution is rapid, the sources of knowledge
are many, and employees’ turnover is high, updates to
the knowledge are frequent and are done by different
people. The continuity and consistency of the knowl-
edge cannot lie on anyone’s shoulders. Some system
support is needed.

We start this paper by motivating the need for quality
support and justifying its feasibility in the context on
interest. We then, present an object model used to
represent the knowledge of interest. We define integrity
qualities and discuss mechanisms for monitoring them.

Quality assurance in light of evolution

Quality assurance in light of changes is not unique to
knowledge management. To motivate the need for and
justify the feasibility of system support of quality as-
surance, we examine how this issue has been handled
in more traditional domains. In particular, we consider
the cases of software, databases, and knowledge bases.
We use insight from these areas to assess the need for
it and the extent to which it is feasible.

Quality assurance in computer programs
One of the prominent distinguishing features of soft-
ware systems is their evolutivity. They are never set
in stone and can be changed at any time in their life-
cycle. Hardware systems, in contrast, wear out with
time; as a result, their designers need only be con-
cerned with the product requirements in effect at design
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time. When and if requirements change, only newly
designed products are bound by the updated require-
ments. Software, by contrast, generally outlives the
requirements for which it is initially developed. The
highly publicized Y2K problem is only one illustration
of this over-longevity and a highlight of the significance
of such properties as maintainability and evolutivity
in software. The ultimate concern in programming is
how to keep programs correct with their requirements
as requirements change. Extensive research efforts in
software engineering have focussed on identifying struc-
tural characteristics that make software systems easy
to modify, and formal processes that trace changes
in requirements, identify components affected by the
change, and support in modifying them to adapt them
to the changed requirement. Programming paradigms
such as structured programming, data encapsulation,
and object-oriented programming have all been moti-
vated by a desire for increased modularity in programs,
thus localizing effects of changes. Software lifecycles
and software methodologies have also been driven to a
large extent by the need to adapt software to require-
ments as these requirements get refined (rapid proto-
typing), or simply evolve over time.

Overall, the major quality of concern for programs
is their correctness with respect to their requirements.
When these requirements are formalized, correctness
can be formally proven and the proof can be system-
supported. Changes in requirements are discrete, and
clearly identified in time. Professional programmers are
responsible for the subsequent adaptation of the soft-
ware to the changed requirements.

Quality assurance in databases
Databases are designed to be snapshots of some world of
interest. As such, the ultimate quality of a database is
the extent to which it accurately represents the world it
represents. Because the world of interest is outside the
scope of any system, database quality is generally ap-
proximated using intrinsic qualities of consistency and
integrity. Early research in database focussed on iden-
tifying structural database properties that capture the
absence of redundancy and reduce the chances of in-
ternal inconsistencies. Relational normal forms are an
example of such structural properties. In addition to
these structural properties, domain-specific "integrity"
constraints are expressed as part of the data model.
These constraints formulate state and transition condi-
tions whose violation would be indicative of problems.
The monitoring of integrity in light of data changes is
tile responsibility of the database management system.
Less frequently, changes warrant the evolution of the
database model itself. These changes are discrete, in-
frequent, and are handled completely manually.

Overall, the quality of a database can be decomposed
into the quality of its model and that of its data. The
quality of both is a relative property that cannot be
proven. Weaker structural and intrinsic criteria of in-
tegrity are used. Changes to data are frequent and per-
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formed by end users; quality assurance during these
changes is monitored by the system. Changes to the
data model are less frequent and performed by database
specialists.

Quality assurance in knowledge bases

Early knowledge based systems such as MYCIN (6),
PROSPECTOR (12), and XCON (1) have been 
cessful, thanks to the painstaking efforts of teams of
pioneer researchers who single handedly elicited, en-
coded, tested, and maintained large collections of do-
main knowledge. These research and experimental ef-
forts have set the foundations for knowledge based sys-
tems and established their feasibility. Yet, their success
could not be easily reproduced in the less uniform and
less controlled environment of most organizations. For
the promise of knowledge based systems to become a re-
ality, general concepts, tools, and methodologies were
needed to support the tasks of knowledge elicitation
and management, and to promote the reusability, marl-
ageability, and maintenance of the resultant knowledge
bases.

Research targeted towards facilitating the mainte-
nance and reuse of knowledge bases has led to promot-
ing modularity and abstraction in the representation
of knowledge. Newell (25) has advocated raising the
level of abstraction of these systems from their symbol
level to a more abstract knowledge level. The need for
such abstraction has been substantiated by Clancey’s
findings when analyzing MYCIN’s knowledge base (9).
Clancey’s work (10), in turn has motivated further work
developing methodologies such as KADS (34), identify-
ing and formalizing problem solving strategies (e.g., (7;
5; 20; 21; 19)), and building tools for knowledge acqui-
sition that can be customized to specific methods and
strategies (11; 14; 13; 23; 32).

Knowledge in knowledge bases is collected for the
specific purpose of solving a problem. In that respect,
the major quality of interest is the extent to which,
collectively, this knowledge solves the problems of inter-
est efficiently independently of the quality of composing
knowledge units. Changes in knowledge bases are gen-
erally discrete and performed by specialists. The qual-
ity of the updated knowledge base can be systematically
tested for collective validity on a set of pre-defined test
cases.

Quality assurance in knowledge
management
Before discussing quality assurance in knowledge man-
agement, we summarize the discussion above by identi-
fying two underlying threads: 1. A common concern for
structure as preventive measure and 2. A set of dimen-
sions that are relevant to the need for and the feasibility
of an automatic quality assurance process.

A concern for structure: Modularity and ab-
straction In all domains, there has been a focus on
the level of abstraction of the information represented



and on the importance of the modularity of its rep-
resentation. These qualities are also important in the
context of Knowledge Management. The object model
presented in section 3 is in part motivated by these cri-
teria.

Dimensions of quality control Three dimensions
have emerged in the characterization of quality control.
They are:

1. The frequency of change and whether change is a
continuous evolutive process or whether it is confined
to discrete instances. When change is discrete and
infrequent, validation can be performed along with
the change. When change is frequent and continuous,
quality assurance is best automated.

2. The qualifications of the person performing the
change, i.e., whether they are specialists, knowledge-
able about the technical issues involved, or whether
they are end users with different training. Specialists
can be relied on to perform the necessary validation.
For end users, system support is needed.

3. The nature of the quality being assured, whether it
is an intrinsic property that can be formalized and
validated within the realm of the environment of in-
terest, or whether it is relative to some outside entity.
Intrinsic properties can be formalized and verified in-
ternally. For qualities relative to external entities,
only weak flags can be set to detect problems.

The first two dimensions impact the need for system-
atic quality monitoring, whereas the third dimension
impacts the feasibility of such monitoring.

We now consider the knowledge management context
with respect to the three dimensions identified.

Frequency of change: Typically, the very reason why a
knowledge management approach is adopted is that
the knowledge of interest is changing rapidly. In the
specific case of engineering design, the knowledge tar-
geted is the set of constraints, standards, and regula-
tions related to design. Technologies, standards, and
regulations all do change with variable frequencies.
The rate of change is such that some system support
for validation would be invaluable.

Qualifications of the person per]orming the changes:
Knowledge in knowledge management typically
comes from various sources with no centralized con-
trol or coordination. In engineering design, the con-
straints of interest come from different sources of
expertise and sources of regulation. For example,
the design of an engine is bound by functionality
constraints, defined by mechanical engineers; casting
constraints, defined by die casting experts; assem-
blability constraints, defined by assembly plant man-
agers; environmental constraints, defined by federal
and professional agencies; and so forth. The knowl-
edge is owned and set by different bodies, at different
times; there is no uniformity in training. More im-
portantly, there is no centralized oversight over the
consistency across sources and across time.

Vehicle Interior
Attributes

driverSeat: Seat
driver SeatPosition: Position
population: PopulationRange

Methods
hipPoint (Seat,Position): Position

Constraints
Sits 95th percentile
Adequate reach 95th percentile Male
Adequate reach 5th percentile Female
Adequate rear view 95th percentile Male
Adequate rear view 5th percentile Female

Figure h Class Vehicle interior extended with con-
straints

Nature of the qualities of interest: Ruggles (30) identi-
ties four dimensions of knowledge quality: timeliness,
comprehensiveness, accuracy, and cognitive author-
ity. These qualities are at least in part non-intrinsic;
they cannot be proven internally. Weaker intrinsic
properties similar to database integrity constraints
can be defined. Because knowledge is more expressive
than data (richer semantics), and because knowledge
from different sources is overlapping, the integrity
constraints that can be formulated are potentially
more expressive and more effective than in other set-
tings.

Model: Classes with Constraints

We briefly introduce the object model used to cap-
ture engineering design constraints. The representa-
tion is devised for individual knowledge bases devel-
oped by specific regulation bodies. All knowledge bases
of interest come together in the context of an intelli-
gent CAD/CAM system. An object-oriented model is
used to represent each of these knowledge bases. For
the sake of modularization and encapsulation, the con-
straints are grouped together and associated with the
class of objects that they constrain. For the sake of
abstraction, the constraints are not represented in an
operational fashion within the class methods or as ac-
tive rules. They are, instead represented declaratively
as part of the class. To minimize redundancy, we have
opted to represent each constraint exactly once, in the
most general context in which it applies. We illustrate
the representation in Figure 1 where we show the ex-
ample of a Vehicle Interior class defined using the UML
(4) modeling language. We added category constraints
to the class diagram.

Because the classes are mostly an encapsulation tool
for the constraints, no attempt is made to fully define
them. We only include those attributes and methods
used in the expression of the constraints. Constraints
are instances of the class Constraint. For example, the
first constraint in the Vehicle Interior is illustrated in
Figure 2.
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Sits 95th percentile:Constraint

name: sits 95th percentile

in class: Vehicle interior

text:

illustration:

The distance between driver’s seat’s hip
point and the foot pedal must be longer
than the length of the leg of the 95th
percentile male by at least d centime-
ters.

CAD drawings.

rationale:

cost:

sour ce:

Drivers must be comfortable enough to
sustain the sitting position for extended
period of time.

If violated, vehicle will not be usable by
the tallest segment of the driver popu-
lation.

SAE standard.

formula:

tolerance:
parameters:

distance(hipPoint, footPedal) 
population.legLength[95] + d
10 % of d
driverSeat.position, population
hipPoint.position

efficiency:
Always true for buses and vans (implied
by buses and vans standard measure-
ments).

Figure 2: Example of a constraint instance.

F1 : CI(F1)
-7 2:CI(F2)

Figure 3: Constraint Propagation via Part-Feature as-
sociation

Scope of the constraints

The requirement that constraints be associated with a
unique class is a measure of redundancy reduction. A
constraint may apply to any number of classes. The
actual scope (set of classes where it applies) is derived
using the following set of inference rules.

Deduction (Inheritance) Class specialization 
one of the foundational features of object orientation.
It allows the definition of classes in a modular way. If
a constraint C constrains a class G and if class S is a
subclass of G, then C constrains also S. This is captured
by the following rule:

Inference Rule 1 Constraint propagation by de-
duction.

C constrains G
S subclass of G
C constrains S

Contextual Qualification In any domain, there are
features that can occur in any number of classes, yet
maintain the same set of properties across classes. For
example, in the building domain, a rectangular open-
ing, such as a window opening, carries the same re-
quirements, whether it occurs on a kitchen wall, a bath-
room wall, or a garage wall. For abstraction purposes,
instead of repeating feature constraints in all classes
where the feature occurs, we define a separate class for
the feature and relate it to the containing classes using
a part-feature relationship. Graphically, we represent
this relationship using a bowtie on the part side. When
a constraint Cf constrains a class F, and if class P has
a feature F1 of type F, then constraint Cf constrains P
at F1, or P.F1. This is captured by the rule below and
illustrated in Figure 3.

Inference Rule 2 Contextual qualification

C constrains F
P has feature F1
F1 instance of F
C(F1) constrains 
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Assembly binding Assembly is another common as-
sociation between classes. ]t is usually put under the
umbrella of aggregation (16). A travel coffee mug for ex-
ample, is an assembly of a cup, a cup handle, and a lid.
The lid fits tightly with the cup opening; the cup han-
dle has an attachment mechanism that mates with an
attachment mechanism on the cup. Generally, parts of
the same assembly have interfaces to other parts of the
same assembly. The corresponding interfaces have to be
compatible, resulting in a binding (relationship such as
equality) between attributes of the different parts and
bindings between attributes of the whole and attributes
of the parts. We represent assembly associations by
creating an assembly class template that connects the
whole and the different parts. Constraints on the com-
mon (bound) attributes are placed in the assembly and
shaped by the different participants (whole and parts).
If a constraint C constrains attribute A on an assembly,
then any of the participants of the assembly that has
an attribute A or that has an attribute bound to A is
also constrained by C. This is captured by the following
two inference rules covering the two cases:

Inference Rule 3 Assembly propagation

C constrains Assbly C constrains Assbly
¯ p,pi parts in assbly

P part in Assbly
A, A’ attributes of P, PIA attributes of P A~ E C.parameters

A E C.parameters
bound(A, ~)

C constrains P
C constrains P

Knowledge Quality
As we have discussed in section 2, the quality of the
knowledge cannot be fully captured as an intrinsic prop-
erty. Instead,. weaker measurable criteria of integrity
are defined. These criteria are generally intrinsic cri-
teria of consistency rather than relative criteria of cor-
rectness. Criteria of consistency characterize the state
of being free of certain inconsistencies. In an object
model, two types of inconsistencies can occur: incon-
sistency within a single class or inconsistency across
classes. Inconsistencies can be structural or logical. We
focus here on logical inconsistencies and show a sample
set.

Defining Inconsistency
Inconsistency within a class A class is inconsis-

tent if it has no instances because it is over constrained.
This is captured by the following definition.

Definition 1 A class A is said to be logically incon-
sistent if the set C = {clc constrains A} is a contra-
diction, i.e. C =~ false.

Inconsistency across classes Inconsistency across
classes generally is a result of some sort of redundancy.
In the traditional relational database model, a set of
normal forms has been defined to indicate the absence
of specific types of redundancies, and thus the absence
of resulting inconsistencies. We use the same model to

define four normal forms. Whereas with the relational
model, higher normal forms represent stronger condi-
tions, it is not the case here. Therefore, except for the
first normal form, we will not number the normal forms,
we name them instead. The first normal form, as is the
case in the relational model, is in fact a pre-requisite,
not directly related to redundancy.

Definition 2 A knowledge base is in first normal
form iff all properties of interest are individually iden-
tified.

This applies in particular to constraints. For mainte-
nance, evolution, and validation purposes, it is impor-
tant to be able to group and classify constraints other
than by the object to which they apply. Attributes
such as rationale, cost, and source, need to be clearly
identified (rather than embedded in the text of the con-
straint). For example, the standard placement of con-
trois on the control panel is devised with the assumption
that drivers are right-handed. In an agile design situa-
tion where the driver is left-handed, it is important to
be able to identify those constraints and revise them.

Definition 3 A knowledge base is in generalization
normal form iff all constraints are associated with the
most general class to which they apply.

A constraint applicable to all openings for example,
should not be associated with specific types of open-
ings. Instead, it should be associated with the general
class opening. This eliminates redundancy across sib-
lings and redundancy between parents and children.

Definition 4 A knowledge base is in smallest con-
text nornml form iff all constraints are associated
with the smallest context to which they apply.

For example, all constraints about window openings
should be placed with the class window opening rather
than repeated with every occurrence of this feature and
associated with the wall in which they appear. This
eliminates repetition within a same class with multiple
occurrences of a feature, and repetitions across classes
sharing a feature.

Definition 5 A knowledge base is in encompassing
context Normal form iff all constraints are associ-
ated with classes that include all of the attributes being
constrained.

In other words, a class cannot "enforce" a constraint
if the constraint refers to attributes of other classes.
This normal form justifies our definition of the tem-
plate assembly for example. Constraints related to at-
tributes that are shared between the cup, the lid, and
the cup holder cannot be left as the responsibility of
any of the individual classes. They belong to the en-
compassing assembly class. More generally, this normal
form states that every constraint involving more than
one class implies the existence of an encompassing class
that contains (or involves) both. A constraint binding
the heat generated by an engine and the cooling power
of a radiator for example, should not be placed within
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the radiator nor within the engine. It belongs in the
encompassing unit (engine block).

Monitoring and preserving Integrity

The normal forms defined here can be used as gen-
eral guidelines for modeling the knowledge base. The
initial design may identify additional domain specific
knowledge integrity constraints. The preservation of
the normal forms and other knowledge integrity con-
straints can be done as classes and constraints are
added, retracted, and modified. A set of triggers (event-
condition-action rules (33)) can be placed to guide 
user updating the knowledge base. Note that because
the knowledge integrity normal forms are based on in-
tentional criteria rather than extensional properties,
the system can only detect potential problems, suggest
courses of actions, and support the user in selecting
and executing a course of action. For example, given a
class G with two subclasses A and B, if class A houses
a constraint C and the user adds the constraint C to
class B, the system will raise a possibility of violation
of the generalization normal form, and suggest that the
constraint C be moved up to class G.

Similar triggers can be set up to detect the violation
of other normal forms as users modify constraints and
classes. We have found that users need help primarily
in deciding where to place new classes, i.e. how to relate
new classes to existing classes. A user defining a sunroof
opening for example, may start by defining a new class
from scratch. As the system detects intersections and
similarities, it may advise the user and suggest creating
relationships to other classes. The system may find for
example, that the new class sunroof opening has much
in common with the class window opening. The system
suggests creating a common parent to both classes.

Overall, the normal forms can be used as a basis for
building a friendly interface for knowledge acquisition.
Such interface would guide the user in deciding where
to place new classes, how to connect them, and where
to place the constraints.

Summary, Conclusion

In this paper, we have discussed the issue of assessing
and preserving the quality of organizational knowledge
repositories. Because such repositories are contributed
to by a variety of people, and because their value is
in the capture of know-how of workers who may no
longer be part of the organization, monitoring of qual-
ity and consistency is essential. We have defined an
object model in which domain constraints are stored in
their declarative form. We have listed some of the class
relationships that we have found to be key in design en-
vironments, and defined a set of normal forms around
these relationships.

Because the normal forms are intentional, their en-
forcement by the system must be semi-automatic. The
system supports the user by detecting problems and
suggesting fixes. The user has the final say.
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