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Abstract 
We are interested in real-time learning problems where the 
underlying stochastic process, which generates the target 
concept, changes over time.  We want our learner to detect 
when a change has occurred, thus realizing that the learned 
concept no longer fits the observed data.  Our initial approach 
to this problem has been to analyze offline methods for 
addressing concept shifts and to apply them to real-time 
problems.  This work involves the application of the 
Minimum Description Length principle to detecting real-time 
concept shifts.   

 
Introduction 

 If enough consistent data can be obtained, standard 
machine learning algorithms can be applied to most 
learning problems in an offline, batch learning approach 
[5, 6, 7].  Our interest is in an online, sequential learning 
process, where the probabilistic functions that are 
generating the attributes and classifications of the world, 
change over time.   
     In the classic supervised learning problem [5, 9], it is 
generally stated that some stochastic function F(x) is 
generating an attribute vector x, based on a fixed 
probability distribution.  The attribute vector, x, represents 
the salient features of the world.  In a batch learning mode, 
the learner is given pre-classified training examples based 
on a conditional distribution function F(y|x), where the 
values that y can assume are the classification values that 
would be associated with an instantiation of the attribute 
vector x.  This function is unknown to the learner.  
Consequently, it is the job of the learner to attempt to 
approximate this function, F(y|x), as best it can by 
observing the training values and applying a learning 
algorithm.   
     The online, sequential learning process presents several 
added difficulties.  For example, since the learner is 
receiving it’s training data sequentially; it will need to 

repeatedly apply the learning algorithm until it is satisfied 
that it has converged to a good model of the world.  This 
means that it has to store all of the previously encountered 
training vectors in some usable form.  Due to the enormity 
of the datasets, some summarization technique must be 
used that does not sacrifice valuable information [3].  This 
summarization technique must also be chosen so that it 
does not inappropriately bias the next learning iteration 
toward a previously learned model.   
     Our ultimate goal is to address uncertainty in real-time 
distributed computing problems with agent-based 
solutions.  At the core of these agent-based solutions 
would be a real-time learning component that can detect 
and address shifts in the underlying target concept. 
     Our initial approach to this problem has been to analyze 
offline approaches that address concept shifts and to apply 
them to real-time problems.  Our first effort involves the 
application of the Minimum Description Length principle 
to detecting concept shifts.   
 

Sliding Window 
One method used to address concept drift is the sliding 
window [4, 10] approach (figure 1).  With this approach, 
the learner only considers the most recent n observed 
examples when learning the concept.  There are a number 
of parameters the learner must consider, such as the size of 
the window and whether the window size is adaptive or 
stable.  The size of the window is of importance in that a 
small window would compromise the confidence in the 
learned concept.  Learning a concept on a small data 
sample can easily lead to overfitting the learned concept to 
small aberrations in the data or simply overlooking entire 
elements of the target concept.  Conversely, large window 
sizes lead to resource issues in real time systems and may 
also leave the learned concept overly vulnerable to drift in 
the target concept.  If the window size is large enough so 
that the range of enclosed attribute vectors drifts 
significantly, then the learned concept will perform poorly 
in a predictive capacity.   
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     Lastly, it seems that the sliding window approach is 
much better suited to concept drift, rather than concept 

shift.  Concept drift occurs when the target concept 
changes gradually, whereas concept shift occurs when the 
target concept changes instantly.  Instantaneous change in 
the target concept would leave the learned concept open to 
error until the entire window was drawn from the new 
target concept.   
 

Problem Domain 
The goal of our research is to create highly adaptable, real-
time distributed computer systems.  The benefits of this 
work could be realized through improved network data 
transmission speeds, greater autonomous control and 
coordination in satellite constellations and robot 
applications, and greater reliability in wireless 
communication, just to name a few. 

     Even under controlled conditions, distributed 
computing issues, such as maintaining global state and 
determining causality among a series of events, are fraught 
with difficulty.  There are known algorithms for addressing 
these problems, however they are designed to work in 
environments where communication reliability is 
guaranteed and processors never fail.  These algorithms 
quickly fail when a distributed computing application is 
introduced into a volatile environment, in which 
communication links may be unstable, the number of 
nodes may change, or adversaries may introduce errors 
into the communication channel.               

Our research addresses the need for autonomous 
adaptability in real-time environments by introducing 
specialized intelligent agent technology into the distributed 
computing arena.  Using this technology, we are providing 
a method for coping with uncertainty in order to address 
real-time adaptability issues. 

One example of an application in this area is dynamic 
network routing. Real-time learning agents could be 

deployed at network routers so that they may learn to adapt 
routing patterns on-the-fly as traffic patterns change.  For 
instance, traffic patterns may change with the time of day 
or due to an anomalous event, such as an outage in one 
part of the network.  The growth of Internet use also 
causes traffic patterns to change in ways that have yet to be 
foreseen.  Adaptive agents could reduce network down-
time, provide greater throughput, and improved customer 
service. 

Our initial approach has been to use a very popular 
problem, known as the ‘the bandit problem’ [1].  The 
bandit problem refers to the notion of a slot machine, 
which is a stochastic process with an unknown chance for 
payoff.   
     The bandit problem has many variations but for the 
purposes of this work, let it be defined as follows: 
 
• Let there be two or more arms, where each arm is a 

stochastic process that can be in state 0 or 1. 
• State 0 produces a corresponding reward of 0.  State 1 

produces a corresponding reward of 1. 
• When an agent selects an arm, it receives the reward 

produced by the arm in its current state. 
• Selecting an arm causes it to transition to a new state 

with some fixed probability.  There is no correlation 
between the probability distribution governing each of 
the two arms 

• The selection of one arm does not affect the state of 
the other arm.   

• The agent may make N total selections, with the 
objective of maximizing its total reward.  This is 
typically called an N-horizon problem.   

Time 

Figure 1. Addressing real-time concept drift/shift with a sliding window 
approach.  The learner only considers the most recent n attribute vectors. 
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• Each arm starts in a random state, selected according 
to its probability distribution. 

 
     This problem provides a simple testing ground for our 
machine learning research and is the subject of this initial 
work. 
 
Bandit Simulator 
For the purpose of experimentation, we have developed a 
k-armed bandit simulator.  The simulator allows the user to 

add any number of arms where each arm can be configured 
with the following parameters: 
Odds: The arm’s actual odds of paying off. The arm is a 
Bernoulli Process, in that it generates independent results 
of the form "win or lose". The odds parameter is the true 
likelihood that the arm will produce a "win". 
Payoff: This parameter is simply the value (number of 
wins)/(number of plays). In other words, it is the 
percentage of times this arm has produced a win. It should 
converge to the same value as the odds parameter over 
time. 
Belief: This parameter is the agent’s belief about the 
likelihood of the arm paying off. This value is calculated 

by the agent in response to spending a pull on the arm. The 
agent uses the observed result to update its belief about the 
arm’s odds. If a single arm is played enough times, this 
value should converge to the value of the odds parameter 
for the arm.  Currently, the agent computes a Beta density 
function for an arm after it is pulled.  This function is used 
to formulate a belief as to the payoff odds for each arm.  
The agent assumes a uniform prior belief on the payoff 
odds of each arm.  The agent always selects the arm for 
which it has the highest belief about payoff. 

For the purposes of this work, we also want to generate 
a concept shift.  This is realized by changing the “Odds” 
parameter to a new value during play.  An arm can be 
configured with the following parameters, designed to 
facilitate concept shifts: 

 
Initial Payoff:  The starting “Odds” value for the arm. 
Amount of change:  By how much the “Odds” will 
change at each shift. 
Direction of change: Values of “increment” or 
“decrement” can be selected.  This value indicates whether 
to add or subtract the “Amount of change” to/from the 
“Initial Payoff” value. 

Figure 2.  k-armed bandit simulator. 



# of examples per segment:  The number of examples that 
will be included in each stable target concept.  A segment 
refers to a section of stable target concept values, in this 
case simply a stable “Odds” value. 
# of segments:  The number of concept shifts. 

 

MDL Approach 
In [2], the authors present an approach for detecting the 
boundaries between segments in data mining problems. A 
segment represents data that was generated by a consistent 
process or system.  For example, a coin with a 50-50 bias 
will roughly generate an equal number of <heads> and 
<tails> outcomes.  When the bias changes, the data will 
obviously reflect this change and we consequently call this 
a segment shift.  The author’s original motivation for this 
algorithm was to detect surprising patterns in data mining 
problems.  

The algorithm presented in [2] is based on the 
Minimum Description Length (MDL) principle [8].  In this 
section we describe the basic MDL algorithm for detecting 
concept shifts. 

Each data item is represented as a tuple of boolean 
variable values.  An example of a four variable item set 
might be <true, false, false, true>, where each boolean 
value represents the presence or absence of the particular 
variable.  Each data tuple, containing k variables, can be 
thought of as being generated by a 2k-sided coin or k two-
sided coins.  We will discuss the algorithm with respect to 
a tuple size of one variable.  In other words, a single biased 
coin where the outcome is either <heads> or <tails>. 

The underlying premise of the algorithm is that the 
segmentation and coin parameters that minimize C(M) + 
C( x

r
| M) can be computed in O(T2), where T represents 

the number of tuples, x
r

 is the data set, and M is the 
model.  C(M) represents the cost of encoding the model 
while C(x

r
|M)  represents the cost of encoding the data, 

given the model.  By finding the parameters that minimize 
the cost, the MDL algorithm finds the optimal 
segmentation.  The costs are computed for each possible 
segmentation.  We paraphrase the steps in the algorithm 
from [2] as follows: 

 
1. Construct a directed acyclic graph (DAG) with T+1 

nodes, and directed edges (i, j), for all 0 ≤ i < j ≤ T.  
Each edge is weighted with the cost, c(i,j), 
representing the model and data encoding costs for the 
data items between between i (exclusive) and j 
(inclusive). 

2. Find Model Parameters, p1(i, j) and p0(i,j), where p1(i, 
j) is the probability of <heads> between data items i 
and j and p0(i,j) is the probability of tails.  These 
values are calculated from the data as follows: p1(i,j) = 

j)t(i,j)(i,h1 , where h1(i,j) is the number of <heads> 

between data items i and j and t(i,j) is the total number 
of data items between i and j.  p0(i,j) = 1- p1(i,j). 

3. Find Data Encoding Cost for segment (i,j).  Applying 
Shannon’s theorem with the parameters above yields:  

4. C(x
r

| M) = ∑− xxlogpp , where x = 0, 1.   
5. Find Parameter Encoding Cost.  One of the values 

p0(i,j) or p1(i,j) must be transmitted.  Since the 
maximum likelihood estimate for p1(i,j) can only 
assume t(i,j)+1 values, the parameter encoding cost 
can be estimated as log(t(i,j)) bits.   

6. Find Segmentation Costs.  The boundaries of each 
segment must also be encoded.  For k coins, this value 
is estimated as klogT.   

7. Find Shortest Path.  The shortest path through the 
graph is calculated in O(T2) time, where each edge in 
the shortest path is a segment boundary. 

 
This approach can be extended to tuples of size k by 

modifying the way in which the edge weights are 
calculated.  The most substantial modification stems from 
the fact that with an increased number of variables, the 
number of possible models grows.  The model encoding 
costs must be calculated for each model in order to choose 
the best.  The authors present a simple heuristic for 
circumventing this problem.  They simply reuse the best 
model from the itemset of k-1 and only consider 
generalizations of this model.   

To evaluate this learning method in a real-time setting, 
we have reduced the bandit problem to one arm, in order to 
constrain the problem to that of simply learning one 
shifting target concept in real-time, rather than the arduous 
task of selecting the best of many learned concepts.  Our 
experimentation has yielded some promising results but 
has also shown the need for substantial further work. 

 

Results 
As expected, the MDL solution degrades with respect to 
the size of the shift and the number of examples in each 
segment.  As the shift in the target concept becomes less 
than 0.3 (30%), the segmentation boundaries become 
increasingly less accurate.  Furthermore, as the number of 
examples in the new segment decrease below 50, the 
segmentation boundaries again become less accurate.  
With shifts larger than 0.3 and segment sizes approaching 
100 examples, the MDL approach finds the segmentation 
boundaries with nearly perfect accuracy. 

The primary issue with the MDL approach is its 
demand on computational resources. The search for the 
least costly segmentation is accomplished by constructing 
a graph with T nodes and O(T2) edges, computing costs for 
each edge, and finding the shortest path through the graph 
with the weighted edges.  Obviously the performance of 
this solution degrades rapidly as the dataset grows.     



Conclusions and Future Work 
We are encouraged by the accuracy of the MDL approach 
for detecting concept shifts.  We believe that this solution 
has many areas in which optimization and summarization 
techniques can be applied to reduce the computational 
overhead involved, making this a workable solution to 
real-time learning problems.   

One solution might be to apply summarization 
techniques to the graph so that the number of edges could 
be significantly reduced.  Since the costs of many edges 
are simply composites of collections of edges, this seems 
like a very viable approach.  Another alternative might be 
to apply the sliding window approach, used in concept 
drift, to this concept shift problem.  If we limit our 
‘relearning’ process to a window size that will yield 
acceptable accuracy while keeping computational costs 
low, the MDL approach may work well in real time. 

Clearly the one-armed bandit test is very simple and 
our research must be expanded to substantially complex 
concepts.  These issues will be addressed in our ongoing 
work in this area. 
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