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Abstract

The paper presents an approach to inductive ma-
chine learning based on a consistent integration of
the generalization-based (such as inductive learn-
ing from examples) and metric-based (such as ag-
glomerative clustering) approaches. The approach
stems from the natural idea (formally studied
within lattice theory) to estimate the similarity
between two objects in a hierarchical structure by
the distances to their closest common parent. The
hierarchies used are subsumption lattices induced
by generalization operatiors (e.g. lgg) commonly
used in inductive learning. Using some results
from the theory the paper defines a unified frame-
work fur solving basic inductive learning tasks. An
algorithm for this purpose is proposed and its per-
formance is illustrated by e~_~mples.

Introduction
Inductive learning addresses mainly classification tasks
where a series of training examples (instances) are sup-
plied to the learning system and the latter builds an
intensional or extensional representation of the exam-
ples (hypothesis). The approaches to inductive learn-
ing are based mainly on generalization/speciaiization
or similarity-based techniques. Two types of systems
are considered here - inductive learning from examples
and conceptual clustering. They both generate induc-
tive hypotheses made by abstractions (generalizations)
from specific examples and differ in the way examples
are presented to the system (whether or not they are
pre-claesified). The hypotheses generated by these sys-
tems usually form a partially ordered set under some
generality ordering. The properties of partially ordered
sets are well studied in lattice theory. One concept
from this theory is mostly used in inductive learning
- this is the least general generalization (lgg) which
given two hypotheses builds their most specific common
generalization. The existence of an lgg in a hypothesis
space implies that this space is a semi-lattice (the lgg
plays the role of infimum). The idea behind the lgg
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is to make "cautious" (minimal) generalization. How-
ever this property of the lgg greatly depends on how
similar are the hypotheses/examples used to build the
lgg. For example there exist elements in the hypothesis
space whose lgg is the top element (empty hypothe-
sis). An obvious solution of this problem is to use 
distance (metric) over the hypothesis/examle space 
order to evaluate the similarity between the hypothe-
ses/examples. Then the pair of hypotheses/examples
with a minimal distance between them must be used
for the lgg, thus producing possibly the minimal gen-
eralization over the whole set of hypotheses/examples.
Various distance measures can be used for this purpose.
The best choice however is a distance that is well cou-
pled with the lgg used, that is the pair of the closest
hypotheses must produce the minimal lgg. This is the
problem we address in the present paper.

The next section introduces the algebraic notions
used throughout the paper. Section 3 describes a gen-
eral language independent algorithm called GSL for
building lattice structures on a given set of examples.
Section 4 illustrates the use of the algorithm within a
series of languages commonly used in ML. Section 5 dis-
cusses related work and Section 6 concludes and gives
directions for future work.

Quasi-Metric on semi-lattices
In this section we introduce a height-based distance
measure on a join semi-lattice. (for a survey of met-
rics on partially ordered sets see (Monjardet, 1981)).

Definition 1 (Semi-distance, Qlm~i-metric). 
semi-distance (quasi-me~ric) is a mapping d : O x O --~

on a set of objects O with the following properties
(a, b,c E O):

1. d(a, a) = 0 and d(a, b) 

2. d(a, b) = d(b, (symmetry).

3. d( a, b) <_ d( a, c) d(c, b)(tr iangle inequality).

Definition 2 (Order preserving semi-distance).
A semi-distance d : O × O -* ~ on a partially ordered
set (0, ~_) is order preserving iff for all a, b, c E O, such
that a _~ b _~ c it follows that d(a, b) <_ d(a, c) and
d(b, c) <_ d(a, c)
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Definition 3 (Join/Meet semi-lattice). 
join/meet semi-lattice is a partially ordered set (A, ~)
in which every two elements a, b E A have an infi-
mum/supremum.

Definition 4 (Diamond inequality). Let (A, 
be a join semi-lattice. A semi-distance d : A x
A -~ R satisfies the diamond inequality iff the ex-
istence of sup{a, b} implies the following inequality:
d(inf{a, b}, a) + d(inf{a, b}, b) <_ d(a, sup{a, 
d(b, sup{a, b}).

Definition 5 (Size function). Let (A, ~) be a 
semi-lattice. A mapping s : A x A ~ R is called a size
function if it satisfies the following properties:

S1. s(a,b) >_ 0,Va, b E A and a _ b.

$2. s(a,a) -- 0,VaE A.

$3. Va, b, c ¯ A, such that a _~ c and c -~ b it follows
that s(a, b) < s(a, c) + s(c, b) and s(c, b)-< s(a, 

$4. Let c = inf{a, b}, where a, b ¯ A. For any d ¯ A,
such that a ~ d and b ~ d it follows that s(c, a) 
s(c, b) <_ s(a, d) + s(b, 

Consider for example the partially ordered set of
first order atoms under 0-subsumption. A size func-
tion s(a, b) on this set can be defined as the number of
different functional symbols (a constant is considered 
functional symbol of arity zero) occurring in the substi-
tution $ mapping a onto b (aO = b).

Theorem 1. Let (A, _) be a join semi-lattice and 
- a size function. Let also d(a, b) = s(inf{a, b}, a) 
s(inf{a, b}, b). Then d is a semi-distance on (A, _).

A widely used approach to define a semi-distance is
based on an order preserving size function and the di-
amond inequality instead of property $4. The use of
property $4 however is more general because otherwise
we must assume that (1) all intervals in the lattice are
finite and (2) if two dements have an upper bound they
must have a least upper bound (supremum) too.

FUrther, a size function can be defined by using the
so called height functions. The approach of height func-
tious has the advantage that it is based on estimating
the object itself rather than on its relations to other
objects.

Definition 6 (Height function). A function h is
called height of the elements of a partially ordered set
(A, ~) if it satisfies the following two properties:

H1. For every a,b ¯ A if a _~ b then h(a) <_ h(b)
(isotone).

H2. For every a, b ¯ A if c = inf{a, b} and d ¯ A such
that a _ d and b ~ d then h(a) + h(b) <_ h(c) + 

Theorem 2. Let (A, ~) be a join semi-lattice and h 
a height function. Let s(a, b) = h(b) -h(a), "~ b ¯A.
Then s is a size function on (A, ~_).

Corollary 1. Let (A, _~) be a join semi-lattice and
h be a height function. Then the function d(a, b) 
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h(a) + h(b) - 2h(inf{a, b}), Va, b ¯ A is a semi-distance
on (A,-3_).

General algorithm
Using a given set of examples E the algorithm builds
a semi-lattice G, where E is the set of all maximal ele-
ments of G. The algorithm hereafter referred to as GSL
(Generalizing Semi-Lattice) is as follows:

1. Initialization: G = E, M = E;

2. If [M[ = I then exit;

3. Let T be the set of the least general generalizations
(lgg) of all pairs of elements from the set M;

4. Let hmin ¯ T be an element of T satisfying some
minimality condition rain(T);

5. DC = {hilhi ¯ M, hmi. "~ hi};

6. M=M\DC;

7. G = G U {brain}, M = M U {hmin};

8. go to step 2.

The computational complexity of the algorithm is
O(n3) excluding the lgg and rain operations. The algo-
rithm terminates if the chosen language does not con-
taln infinite descending chains. This holds for proposi-
tional languages and atomic formulae (see next section).

The GSL algorithm can be used to solve two types of
inductive learning tasks:

¯ Conceptual clustering. In this case the semi-lattice G
will represent the concept hierarchy, where the suc-
cessors of the root concept represent the splitting of
the initial set of examples E. Note that the algorithm
allows concept overlapping. This is possible because
the set Train (in the modified version of the algo-
rithm) could contain more than one elements which
possibly can cover a single element.

¯ Concept learning. In this case a class membership
is supplied for each example from the set E. This
information can be used to stop the further general-
izations if a minimal element covering examples from
different classes has been generated. Then this el-
ement is just skipped (not added to set M and its
coverage - not excluded from M) and added to the
set of induced hypotheses. The algorithm proceeds
with other minimal elements (if such exist). Thus the
generalization process stops before reaching the top
element of the lattice (the latter dearly will be aa
overgeneralization).

The construction of the lgg and the computation of
the function rain (estimating the distance between the
elements as defined in Corollary 1) are language specific
and will be discussed in the following sections.

Languages

Attribute-value (propositional) language

An example or a hypothesis in this language consists
of conjunctions of propositions (attribute-value pairs)



[ho=balloonjc--md]

~sffi [ho=flagJc--’rcd]

squarej~-md,ti--yes]
[jc=ms]

~[h~uam
~bsffisquarc,hoffisword,jc---md]

[hsffioctagon,bsfround jc---md]

[hsfsquam,bs=square jcfyellow]
,b~=-~um~]

""~ [hsfsquarc,bs-----squarv,jc---grccn]
[] ~sfoctagon,bs:::octagon] ~’~[hsfsquarc,bsfsqua~,jcf-blue]

[hs.---round,bs.---round]

Figure 1: Propositional hypotheses for MONK1

H -- Pl A... Apn which can also be represented as a set
of propositions, i.e. H = {Pl,... ,Pn}. The partial or-
dering ~ here (usually called covering) is the subset in-
clusion C_ between the hypotheses (examples). The lgg
(the infimum) of two hypotheses is defined as their in-
tersection, i.e. lgg(H1,H2) = Hi n tt2. Then the mini-
reality rain(T) condition chooses elements h E T, which
have been produced as lgg’s of pairs of elements with
minimal distances. That is rain(T) = {hlh E T, h 
Igg(=, y), d(z, y) = minu,~ewd(u, 

Two types of height functions can be used here. The
first one is v(H) = [HI. This is the standard way of rep-
resenting generality with nominal attributes by drop-
ping conditio~ Another useful function (although in
the general case not satisfying property H2 of height
functions) can be defined by using the coverage of the
hypothesis in terms of all maximal elements of the semi-
lattice (the set E), that is v(H) = [{ele ¯ E,H -< e}[.
In contrast to the size of the hypothesis, this is a kind
of semantic evaluation which reflects the generality of
the hypothesis with respect to the examples used to
generate it.

An illustration of the algorithm is shown in Figure
1, where some of the smaller elements of the set G are
shown. The set E consists of the 61 positive examples of
the well-known MONK1 (Thrun et al., 1991) database
(the training sample). As a height function the size 
the coverage of the hypothesis is used. Note that the
produced lattice can be used both for concept learning
(it contains the target hypothesis (hs=bs or jc=red))
and for conceptual clustering since the classifications
of the examples were not used (the negative examples
were skipped).

Atomic formulae

The language of the first order atomic formulae can be
seen as an intermediate step between the propositional
and the fuU relational language (e.g. Horn clauses). Its
main advantage with respect to the propositional lan-
guage is the possibility to define explicitly the equality
of attribute values. The algebraic properties of this lan-

guage are studied in (Reynolds, 1970), where the author
shows that the set of atoms with same functors and ar-
ity augmented by adding a ’universal atom’ and a ’null
atom’ forms a complete lattice. In this lattice the partial
ordering is the instance relation (~) and the meet and
the join operations are the well known greatest common
instance (obtained by unification) and least general gen-
eralization (lgg, obtained by anti-unification).

Within the language of atomic formulae the GSL al-
gorithm builds a semi-lattice, whose maximal elements
are E and the atom with all distinct variables (the uni-
versal atom) is its minimal element. As in the propo-
sitional case the minimality condition chooses elements
h ¯ T, which have been produced as lgg’s of pairs of
elements with minimal distances. That is rain(T) 
{hlh ¯ T, h = lgg(z, y), d(z, y) = minu,~eTd(U, v)}.

Several types of height functions can be used here.
Some of them actually do not conform to the formal
properties of height according to definition 6.

In (Reynolds, 1970) a function evaluating the gener-
ality of atoms is proposed. It is called size(A) (note
that this is not the formal size function according to
Definition 5) and is defined as the number of symbol
occurrences in A minus the number of distinct variables
occurring in A. A > B implies size(B) > size(A) 
A ~_ B implies size(A) = size(B). Also, for any A and
B there is no chain from A to B whose length is greater
than size(B) - size(A). Unfortunately the Reynolds’
size function does not satisfy the second formal prop-
erty of a height function and consequently the function
d is not a quasi-metric.

A simplified version of the Reynolds’ size function
is proposed in (Hutchinson, 1997). It is based on the
number of functional symbols in the atom. Though for-
really a height, this function does not account properly
for the variables in the atoms and consequently it is im-
proper for the minimality condition in the algorithm.

Similarly to the propositional case a coverage-based
function can be used for a height within the language
of atoms. It is defined as v(H) = [{ele ¯ E, H > e}[,
where > is the instance relation.

The algorithm shows a better performance with the
Reynolds’ size function and the coverage-based height
compared with the Hutchinson’s function. Figure 2
shows part of the resulting set G built by the algorithm
running on a version of the MONK1 training sample
represented as atoms (the same set of 61 positive ex-
amples used in the propositional case).

Horn clauses

Within the language of Horn clauses the GSL algorithm
can be used with the 8-subsumption-based lgg (Plotkin,
1970). The formal background for this is the fact that
under 0-subsumption as partial ordering the set of all
Horn clauses with same head predicates forms a semi-
lattice.

When a background knowledge is used the correspond-
ing version of the relative lgg (rlgg) can be applied.
That is, given a set of instances {PI,P2, ...,Pn} of the
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monk(A,A,~yellow,_)

~~~onk(A,A .... blue,..)

moak(A,A ....... )

monk(A,A .... grvcn,D
monk( .......... 

monk( ...... red,_) -- monN~squ~ure ..... rexl,_)

monNN~’e ..... ~d,yes)

Figure 2: Relational hypotheses for MONK1

target predicate and a set of ground atoms BK as back-
ground knowledge the input of the GSL algorithm can
be constructed as E = {P1 +- BK, P2 +- BK, ..., Pn +"
BK).

The major problem in this setting however is find-
ing a proper height function. It is known that the
Horn clause 0-subsumption semi-lattice contains infi-
nite chains. Therefore the definition of a formal height
function is not a trivial task. Practically the GSL al-
gorithm needs an evaluation function representing the
similarity (or distance) between the clauses with respect
to their role in the concept learning problem. Thus
similarly to the case of propositional and atomic lan-
guages a coverage-based height function could be used
too. Currently we are investigating an approach to con-
slstent integration of the syntactical join operation (0-
subsumption Igg) and a semantic height function using
implication based coverage.

There are also direct approaches to define a proper
metric on Horn clauses without height functions.
Some of the most recent ones axe (Hutchinson, 1997;
Nienhuys-Cheng, 1997; Ramon, Bruynooghe, & Laer,
1998a, 1998b). These approaches define a simple metric
on atoms and then extend it to sets of atoms (clauses or
models) using the Hausdorff metric or other similarity
functions. Because of the complexity of the functions
involved and the problems with the computability of
the models these approaches are usually computation-
ally hard.

Related work
The algebraic approach to inductive learning is a very
natural way to study the inherent to the area gener-
alization and specialization hierarchies. These hierar-
chies represent hypothesis spaces that in most cases are
partially ordered sets under some generality ordering.
One of the first and most popular works within this ap-
proach is the Version Space framework (Mitchell, 1982).
In this framework the space of all correct conjunctive
hypotheses is maintained by using the boundary sets S
and G, representing correspondingly the most specific
and most general hypotheses. The version space is ac-
tuaUy an equivalence class of hypotheses with respect
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to the inductive task conditions, i.e. covering all posi-
tive examples and no negative ones. Thus the goal of
the system is by acquiring more examples to reduce this
class eventually to a single hypothesis.

In the presence of background knowledge and in case
of more complex hypothesis languages usually the more
general approach of refinement operators is applied. Re-
finement operators are constructive means to build gen-
eralizations or specializations of hypotheses with re-
spect to some generality ordering. In contrast to the
Version Space approach refinement operators are used
to search the hypothesis space containing not only cor-
rect (not covering negative examples) and complete
(covering all positive examples) hypotheses. Thus 
the case of top-down refinement the system starts from
the most general hypothesis and further specializes it
in order to avoid covering of negative examples. In this
process some positive examples can also be excluded,
therefore the search proceeds with other disjunctive
components of the hypothesis. Conversely the upward
refinement operators are used to generalize an initial
too specific hypothesis in order to ensure that it covers
as many as possible positive examples. The first study
of refinement operators is (Shapiro, 1983), where the 
called Model Inference System is introduced. This sys-
tem performs downward refinement of clauses based on
0-subsumption ordering. An in-depth overview of the
refinement operators used in inductive logic program-
ming can be found in (van der Laag, 1995).

Another type of refinement operators used in ML are
those which take as input two hypotheses and produce
their common generalization or specialization. The
most popular among these is the least general general-
ization (Igg) operator which given two hypotheses build
their most specific common generalization. The exis-
tence of an lgg in a hypothesis space (a partially ordered
set) directly implies that this space is a semi-lattice.
Consequently some algebraic notions as finiteness, mod-
ularity, metrics etc. can be used to investigate the prop-
erties of the hypothesis space. A complete study of least
generalizations and greatest specializations within the
language of clauses can be found in (Nienhuys-Cheng
& de Wolf, 1996).

Lgg’s exist for most of the languages commonly used
in ML. However all practically applicable lgg’s (i.e.
computable) are based on syntactical ordering relations.
A relation over hypotheses is syntactical if it does not
account for the background knowledge and for the cov-
erage of positive/negative examples. For example drop-
ping condition for nominal attributes, instance relation
for atomic formulae and 0-subsumption for clauses are
all syntactical relations. On the other hand the eval-
uation of the hypotheses produced by an Igg operator
is based on their coverage of positive/negative exam-
ples with respect to the background knowledge, i.e. it
is based on semantic relations (in the sense of the in-
ductive task). This discrepancy is a source of many
problems in ML, where overgeneralization is the most
difficult one.



There exists a general semantic relation over hy-
potheses in all languages. It can be defined by the set
inclusion relation between the sets of examples covered
by the hypotheses. In (Champesme, Br~zellec, & Sol-
dano, 1995) it is called empirical subsumption relation.
The empirical subsumption is a preorder and can be
easily extended to a partial order by using the equiva-
lence classes as elements. Unfortunately the lgg w.r.t.
this relation does not exists in the general case (actu-
ally the intersection of two sets is their lgg, however it
does not always have an explicit representation in the
underlying language). In (Champesme et al., 1995) 
empirical subsumption is used for reducing the class of
equivalent hypotheses under the corresponding syntac-
tical relation. Generally this kind of semantic relation
is used as a preference criterion for evaluation of the
hypotheses generated by refinement operators or lgg’s
based on syntactical relations.

Concluding remarks
The paper is an attempt to combine theortical and prac-
tical research in ML. We use basic results from lattice
theory to develop a unified inductive learning frame-
work. We also introduce an algorithm and illustrate
by examples its application in two areas of ML - con-
ceptual clustering and concept learning. Compared to
similar ones our approach has two basic advantages:

¯ It is language independent, i.e. it can be applied both
within propositional (attribute-value) languages and
within first order languages.

¯ It allows consistent integration of generalization op-
erators with a semantic distance measure.

Clearly more theoretical and practical work is needed
to investigate the advantages and drawbacks of our ap-
proach. In this respect we see the following directions
for future work:

¯ On the theoretical side further efforts should be
put into investigating the general conditions which
a coverage-based evaluation function should satisfy
in order to be a correct height function.

¯ The practical learning data often involve numeric at-
tributes. Proper relations, lgg’s and covering func-
tions should be investigated in order to extend the
approach for handling numeric data.

¯ Though the algorithm is well founded it still uses
heuristics. This is because building the complete lat-
tice is exponential and we avoid this by employing
a hill-climbing strategy (choosing a single minimal
element in Step 4). Obviously this leads to incom-
pleteness. Therefore other strategies should be in-
vestigated or perhaps the semantic relation should
be refined to incorporate these additional heuristics.

¯ Finally, more experimental work needs to be done
to investigate the behavior of the algorithm in real
domains (involving large amount of examples and
noise).
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