
Using a Reactive Planner as the Basis for a Dialogue Agent

Reva Freedman

LRDC #819
University of Pittsburgh

3939 O’Hara Street
Pittsburgh, PA 15260

freedrk+@pitt.edu
http://www.pitt.edu/-freedrk

Abstract
This paper describes APE (the Atlas Planning Engine), the
reactive planner at the center of the Atlas dialogue
management system. The goal of Atlas is to build
conversation-based systems, where turns in the "conver-
sation" may include graphical actions and/or text. Since
APE can be used to generate a dialogue involving
arbitrarily nested discourse constructs, it is more powerful
than dialogue planners based on finite-state machines.
Although it is intended largely to model dialogue
containing hierarchical, multi-turn plans, APE can also be
used as a general-purpose programming tool for imple-
menting a dialogue system.

Introduction

Dialogues such as the one in Figure 1 play an important
role in text-based applications involving communication
between a person and a computer, such as intelligent
tutoring systems (ITSs), advice-giving systems and
interactive help systems. In the past, such systems have
often been implemented with finite-state machines, either
simple or augmented. But finite-state machines do not
permit one to model general discourse structures, since the
latter can contain arbitrarily nested components.

Yet neither an algorithm based on a context-free
grammar nor a STRiPS-style planner is a good choice for
modeling a conversation either. Primarily, one cannot fully
plan a conversation in advance because it is impossible to
predict what the other agent is going to say. Even if it were
possible to enumerate all the alternatives in advance,
e.g. using a menu-based input system, it is inefficient to
elaborate sections of a plan that will never be executed.

For these reasons we have chosen reactive planning
(Georgeff and Ingrand 1989) as the underlying model for
our dialogue planner. In short, we model conversation like

This research was supported by NSF grant number 9720359 to
CIRCLE, the Center for Interdisciplinary Research on
Constructive Learning Environments at the University of
Pittsburgh and Carnegie-Mellon University.
Copyright © 2000 American Association for Artificial
Intelligence (www.aaai.org). All rights reserved.

a chess game: expert players have a plan for upcoming
moves, but they are also capable of changing the plan when
circumstances change.

Our plan operators are based largely on the hierarchical
task network (HTN) style of planning (Yang 1990; Erol,
Hendler and Nau 1994). First, decomposition is better
suited to the type of large-scale dialogue planning we are
currently doing than means-end reasoning. It is much easier
to establish what a human speaker will say in a given
situation than to be able to understand why in sufficient
detail and generality to do means-end planning. Second,
the conversation is in a certain sense the trace of the plan.
In other words, we care much more about the actions
generated by the planner than the states involved, whether
implicitly or explicitly specified. Finally, we view
dialogues as having a hierarchical structure (Grosz 1977),
and we use the hierarchy information in preconditions as
one way to maintain coherence.

In this paper we will describe APE (the Atlas Planning
Engine), a reactive dialogue planner we have built for
Atlas, a conversation manager for intelligent tutoring
systems (Freedman 1998). APE is a descendant of the
system described in Freedman and Evens (1996). We will
provide an annotated example of dialogue generation to
show how APE can be used to generate dialogues that
earlier systems could not handle.

Operation of the Planner

Figure 2 contains examples of plan operators. The system
stores its intentions in an agenda, which is implemented as
a stack with additional operations available besides push
and pop. In addition to a goal, a stack entry can include a
selected plan operator and its bindings. To initiate a
planning session, the user invokes the planner with a goal,
e.g. to conduct a conversation covering a specified topic,
or to help a student solve a problem. The system stores the
initial goal on the agenda, then searches the operator
library to find all operators whose goal field matches the
goal on top of the agenda and whose filter conditions and

NATURAL LANGUAGE PROCESSING203

From: FLAIRS-00 Proceedings. Copyright ' 2000, AAAI (www.aaai.org). All rights reserved. 



preconditions are satisfied. The filter slot is used for static
properties, such as properties of domain objects, while
preconditions are used for characteristics that can change
as the dialogue progresses, e.g. the number of times a
particular construct has been used. (For simplicity, the
filter slot is not shown in the figures.)

Goals are represented using first-order logic without
quantifiers, with unification used for matching. Multiple
conditions can be used, and are considered to be and-ed
together. The not function is also available; the closed
world assumption is used. If more than one (operator,
binding list) match is found, the last one found is used,
although the user has the option of writing a different
algorithm for resolving duplicates.

Since the system is intended especially for generation of
hierarchically organized task-oriented discourse, each
operator has a multi-step recipe in the style of Wilkins
(1988). When a match is found, the matching goal 
removed from the agenda and is replaced by the following
items (top of list represents top of agenda):
¯ (BEGIN) marker
¯ First step of recipe
¯ Second step of recipe

¯ (END) marker

The (END) marker contains the goal that triggered the
operator in case we later need to find another way to satisfy
the same goal.

Recipe items can take several forms:
¯ Goal: Create a subgoai.
¯ Primitive: Do an action. Since this is a text planner, the

action is usually to say something. Graphical actions can
be implemented as primitives or via the use of an
external relation, described later.

¯ Interactive primitive: Say something and give control to
the other party to reply.

¯ Assert: Add a ground fact to the transient knowledge
base.

¯ Retract: Remove all matching facts from the transient
knowledge base.

¯ Fact: Evaluate a condition. If false, skip the rest of the
recipe.

¯ Retry-at: Pop the agenda through the first (END) marker
where the retry argument is false, then restore that
entry’s original goal.

¯ Prune-replace." Pop the agenda until the retry argument
becomes false, then push an optional list of new recipe
items onto the agenda.

Fact is used to allow run-time decision making
by bypassing the rest of an operator when circumstances
change during its execution. Although preconditions and
./act both allow one to express if-then conditions in the
APE syntax, preconditions are only checked when an

204 FLAIRS-2000

operator is being chosen. Although the use of fact could be
replaced by preconditions on an additional operator, the
use of fact allows a more natural writing style.

Retry-at implements a Prolog-like choice of alternatives.
If there are multiple ways to satisfy a goal, retry-at allows
one to choose among them a second time if one’s first
choice is later shown to be undesirable. For retry-at to be
useful, the author must provide multiple operators for the
same goal. Each operator must have a set of preconditions
enabling it to be chosen at the appropriate time. As in
Prolog, retry-at is also useful for implementing loops; one
simply chooses the same operator every time until the exit
condition is reached. Fact can be used to check the exit
condition.

Prune-replace allows a type of decision-making
frequently used in dialogue generation. When a
conversation partner does not give the expected response,
one would oRen like to pop the top goal from the agenda
and replace it with one or more replacement goals. Prune-
replace implements a generalized version of this concept,
allowing one to pop the agenda until a desired
configuration is reached. Although any instance of prune-
replace could be replaced by retry-at and an additional
operator, the use of prune-replace permits a more natural
writing style.

Data Storage

The APE environment contains two ground-clause
knowledge bases. One contains permanent information
such as domain facts, while the other contains transient
facts that become true during program execution. Although
APE puts no restriction on relation names, the following
naming convention is used in the examples below to clarify

I T:
2 S:
3 T:
4 S:
5 T:

6 S:
7 T:

8 S:
9 T:

10 S:
11 T:

What controls TPR?
Arteriolar radius. (near miss)
And what controls arteriolar radius?
Radius of arterioles. (near miss)
No, radius of arterioles and arteriolar radius are the
same thing.
So what controls arteriolar radius?
Arteriolar diameter. (near miss)
Arteriolar diameter and arteriolar radius are the
same thing in different units.
Try again. What controls arteriolar radius?
Arteriolar resistance. (near miss)
No, actually arteriolar radius controls arteriolar
resistance.
So what controls arteriolar radius?
Sympathetic stimulation.
In other words, the nervous system.

Figure 1: Sample dialogue



Operator TI:
(def-operator neural-partial-mechanism

:goal (did-handle-near-miss)
:precond (w-variable-is ?neural)

(is-neural ?neural)
(w-topic-is mechanism)
(w-level-is topic)
(i-input-concept-is ?partial))

:recipe (goal (did-near-miss-specific ?neural ?partial)))
:hiercx ))

Operator T2:
(def-operator neural-partial-mechanism-first

:goal (did-near-miss-specific ?neural ?partial)
:precond ((not (w-max-nearmiss-is ?max))

(e-on-leg ?partial ?neural none))
:recipe ((assert (w-max-nearmiss-is ?partial))

(goal (did-tutor-deep mechanism ?partial ?neural t)))
:hiercx ())

Operator T3:
(def-operator neural-partial-mechanism-later-synonym-execution

:goal (did-near-miss-synonym ?neural ?partial ?max)
:precond ()
:recipe ((goal (did-utter ("No, " ?partial "and" ?max "are the same.")))

(prune-replace ((w-level-is prompt)
(goal (did-tutor-deep mechanism ?max ?neural post-error)))))

:hiercx ())

Operator T6:
(def-operator mech-ling-near-miss

:goal (did-handle-ling-near-miss)
:precond ((w-topic-is mechanism)

(w-variable-is ?vbl)
(is-neural ?vbl))

:recipe ((retry-at (and (w-topic-is mechanism)
(w-level-is topic) 

:hiercx ())

OperatorT7:
(def-operator tutor-by-elicit

:goal (did-tutor ?topic ?vbl)
:precond ((not (i-input-catg-is ling-near-mlss)

. . . )

:recipe ((goal (did-elicit ?topic ?vbl)))
:hiercx ((assert (w-topic-is ?topic))

(assert (w-level-is topic))))

Figure 2: Sample discourse operators

the exposition. Relations starting with w- are "working
storage," i.e. facts added to the transient knowledge base to
maintain state between turns. Relations starting with p- or
with no prefix represent rhetorical knowledge and domain
knowledge, respectively, in the permanent knowledge base.

Facts can be added and deleted from the transient
knowledge base whenever desired using assert and retract.
Additionally, the :hiercx slot of the operator syntax exists

to allow operators to make decisions according to the
current discourse context. Items in the :hiercx slot are
instantiated and kept in the transient database only as long
as the operator which spawned them is on the agenda.

Finally, APE permits the user to declare external
relations. These relations are used in the same way as other
knowledge base relations, but they do not actually appear
in the knowledge base. Instead, when an external relation is

NATURAL LANGUAGE PROCESSING 20S



Operator T8:
(def-operator tutor-deep-mechanism-by-elicit-cont

:goal (did-tutor-deep mechanism ?from-vbl ?to-vbl t)
:precond )
:recipe (goal (did-utter "And "))

(goal (did-elicit mechanism ?from-vbl)))
:hiercx (assert (w-level-is prompt))))

Operator T9:
(def-operator tutor-by-inform ;; not used in example

:goal (did-tutor ?topic ?vbl)
:precond (...)
:recipe ((goal (did-inform ?topic ?vbl)))
:hiercx ((assert (w-topic-is ?topic))

(assert (w-level-is topic))))

OperatorT10:
(def-operator tutor-by-restate

:goal (did-tutor mechanism ?vbl)
:precond ((is-neural ?vbl)

(i-input-catg-is ling-near-miss))
:recipe ((goal (did-utter "In other words,
:hiercx ((assert (w-topic-is mechanism))

(assert (w-level-is topic))))

the nervous system.")))

Operator Tll:
(def-operator elicit-mechanism-default

:goal (did-elicit ?topic ?vbl)
:precond ((w-topic-is mechanism))
:recipe ((prim-interactive (ask ’("What controls"
:hiercx ())

?vbl "?"))))

OperatorTl2:
(def-operator utter

:goal (did-utter ?utterance)
:precond ()
:recipe ((primitive (say ?utterance)))
:hiercx ())

Figure 2 (continued): Sample discourse operators

called, a user-written function is requested to return a
binding list with all possible sets of bindings, in the same
format used by the knowledge base interface. The use of
external relations allows the user to express preconditions
which may be inconvenient to express in first-order logic,
to connect to an external database, or to communicate with
another program, such as a domain expert or a graphical
user interface. In the examples below, names starting with
e- represent external relations.

Communicating with Other Agents
The planner communicates with other processes via the
transient knowledge base. Functions are provided for other
processes to read and write facts in the knowledge base. In
the example below, the user interface is handled by a

process running in parallel with the planner. Relations
starting with i- are added to the knowledge base by this
process.

For responding to the user, the example below contains
text generated directly by the planner. Forms representing
text could also be sent to a text realization component
whose interface is an external relation. Additionally, both
text and graphical output could be sent to a GUI.

Generating a Dialogue
In this section we walk through an example to show how
the APE planner can produce more complex dialogues than
other dialogue systems. For this purpose we have
reimplemented a piece of CIRCSlM-Tutor v. 2 (Woo et al.
1991; Zhou et al. 1999), a text-based ITS in physiology.

2O6 FLAIRS-2000



Figure I shows an example of text that can be generated
with APE. It contains the text of one tutoring episode,
i.e. it teaches the student one piece of domain knowledge.
Following Grosz (1977), each tutoring episode is seen 
be a subdialogue of the complete tutoring session.
Although the generated text is real, it should be noted that
the dialogue is not realistic in the sense that genuine
students do not usually make so many consecutive distinct
errors.

In this episode, the content to be communicated is the
fact that total peripheral resistance or TPR, an important
factor in the physiology of blood pressure, is under nervous
system control. Figure 3 shows the relationship between
TPR, the nervous system and other relevant physiological
parameters. The arrow represents the relation "directly
controls." The italicized parameters represent deeper
knowledge that the student does not need to invoke in
order to solve the problem. However, if the student does
invoke that knowledge, the teacher wants to build on that
information to help the student understand the role of the
nervous system.

Turn 1 of Figure i is generated from the goal (did-tutor
mechanism TPR). One way to satisfy this goal is through
operator T7. Operator TI 1 is one of a number of lower-
level realization operators that generate different surface
forms as realizations of the did-elicit subgoal. Operator T7
also asserts that the current topic is mechanism, and the
current hierarchical discourse level is topic. These facts
will be used to choose appropriate specializations of goals
in later turns.

The correct answer to the question in turn 1 is the
nervous system. Although the student does not give that
answer in turn 2, the student gives an answer that the tutor
can build on in a collaborative fashion. We sometimes call
an answer such as this, one that is not the desired answer
but not wrong either, a near miss. Near misses are a
subcategory of the category Woolf (1984) labels "grain 
truth" answers.

Assume that a plan operator not shown, one of a series
of input-handling operators, cause the goal did-handle-
near-miss to be invoked whenever the input processor
recognizes a near miss. (Note that "near miss" is as much 
pragmatic distinction as a semantic one.) In addition to
examining the input, the preconditions of operator TI use
the previously stored topic and level information to restrict
this operator to cases where its output will be appropriate
in context.

For the first near miss in a subdialogue, operator T1 will
always trigger operator T2. For the first near miss, the
relation w-max-nearmiss-is, which keeps track of how
close the student has come to the correct answer, has not
yet been used. As a result, the not-clause in operator T2 is
satisfied. The user-written external relation e-on-leg checks
the data structure in Figure 3 to make sure that the student

is following the arrows in the correct direction. If all the
preconditions are satisfied, operator T2 will trigger one of
a number of lower-level operators, such as operator T8.
Other variants of operator T8 generate discourse markers
that fit better into other contexts. The resulting output is
seen in turn 3.

Assume that this time the student replies with a synonym
of the previous answer, such as "radius of arterioles," as
shown in turn 4. Operator T3 applies, followed by operator
TI2, causing turn 5 to be generated.

Now assume that the student replies "arteriolar
diameter," as shown in turn 6. Arteriolar diameter is related
to arteriolar radius, but the relationship is not causal.
Operator T4, not shown because of its structural similarity
to T3, applies in this case, causing turn 7 to be generated.
A similar process is used if the student starts to go in the
wrong direction, as shown in turn 8. In that case, operator
T5, which is also not shown, applies, generating the text
shown in turn 9.

Finally, assume that the student gives the right answer
but not with the desired terminology, as shown in turn 10.
This case, the "linguistic near miss," is handled by operator
T6. This operator recognizes that the student’s answer is
essentially correct. Thus it uses retry-at to peel off any
open goals which have accumulated since the topic and
level were set at the beginning of the episode. The original
goal is now on top of the agenda again, but the state of the
world has changed so that operator TI0 applies instead of
T7, causing turn 11 to appear.

If the student had given a perfect answer, e.g. "nervous
system," the system would have chosen an operator with a
null recipe, causing the planner to go on to the next sibling
(if one exists) or parent of the last goal. In the example, 
this point the original goal is satisfied, the agenda is empty,

Nervous system
(= sympathetic nervous system 
parasympathetic nervous system)

Smooth muscle tone
Arteriolar muscle tone

Arteriolar size
Arteriolar radius

Arteriolar diameter

Arteriolar resistance [

$
(total peripheral resistance) I

TPR

Figure 3: Domain knowledge

NATURAL LANGUAGE PROCESSING 207



and the subdialogue is complete.
Operator T2 updated w-max-nearmiss-is to show how

much progress the student made toward the correct answer
on the first attempt. A similar operator, not shown, updates
this relation when the student makes further progress. Note
that operators 3, 4 and 5 do not update it because the
student has not made further progress. For that reason, the
question in turns 3, 5, 7 and 9 remains the same.

The relation w-level-is prompt is added to the transient
knowledge base by the expansion of the did-tutor-deep
goal that generates the question at the end of turns 3, 5, 7
and 9. When operator T3, T4 or T5 is invoked, the
previous prompt is peeled from the agenda to prevent
multiple prompts from becoming part of the tutor’s model
of the dialogue. This models the intuition that each of these
prompts replaces its predecessor as an attempt to help the
student answer the original question. If the student were to
give a correct intermediate answer to one of the prompts,
we would expect the tutor to build on that answer, not to
return to an earlier prompt. If we did not remove the
superfluous prompts from the agenda, the system would
expect the student to answer all of the stacked-up prompts.

This example shows that APE can generate more
complex dialogues than the system built by Zhou et al.
(1999) to handle similar tutoring episodes. While Zhou’s
system could be described as an augmented finite state
machine, APE allows arbitrarily deep nesting of discourse
constructs. Although the finite-state machine approach can
handle many types of near misses, it cannot handle nested
ones, such as a linguistic correction to a near miss. More
generally, many of the constructs in this example depend
on nested goals and could not be generated using earlier
approaches.

Conclusion
in this paper we have described APE, a reactive planner
that we have implemented as part of the Atlas dialogue
manager. It can be used to implement any conversation-
based system, where turns in the "conversation" may
include graphical actions and/or text. We have shown how
this system can be used to generate a dialogue involving
multiple types of answers to a question, each of which
requires a different continuation. This system is intended
largely to model dialogues with hierarchical, multi-turn
plans. However, we have shown that it can be used as a
general-purpose programming tool for implementing a
dialogue system, since it can express the fundamental
building blocks of sequence, selection and iteration, as
identified by Dijkstra (1972).

Acknowledgments
This paper has been improved by comments from Mark

2O8 FLAIRS-2000

Core, Abigail Gertner, Michael Glass, Neil Heffernan,
Pamela Jordan, Bruce Mills, Martha Pollack, Michael
Ringenberg, Kurt VanLehn, Yujian Zhou and the referees.

References
Dijkstra, E.W. 1972. Notes on Structured Programming.
In Dalai, O.-J., Dijkstra, E.W. and Hoare, C.A.R.,
Structured Programming. London: Academic Press.

Erol, K., Hendler, J. and Nan, D. S. 1994. I-ITN Planning:
Complexity and Expressivity. In Proceedings of the
Twelfth National Conference on Artificial Intelligence
(AAAI ’94), Seattle, WA.

Freedman, R. 1998. Atlas: A Plan Manager for Mixed-
Initiative, Multimodal Dialogue. In AAAI ’99 Workshop
on Mixed-Initiative Intelligence, Orlando.

Freedman, g. and Evens, M.W. 1996. Generating and
Revising Hierarchical Multi-Turn Text Plans in an ITS. In
Intelligent Tutoring Systems: Third International
Conference (ITS ’96), Montreal, 632-640. Berlin:
Springer. Lecture Notes in Computer Science 1086.

Georgeff, M. P. and lngrand, F. F. 1989. Decision-Making
in an Embedded Reasoning System. In Proceedings of the
Eleventh International Joint Conference on Artificial
Intelligence (IJCAI ’89), Detroit, MI, 972-978.

Grosz, B. J. 1977. The Representation and Use of Focus in
a System for Understanding Dialogs. In Proceedings of the
Fitth International Joint Conference on Artificial
Intelligence (IJCAI ’77), Cambridge, MA, 67-76.

Wilkins, D. 1988. Practical Planning: Extending the
Classical A! Planning Paradigm. San Mateo, CA: Morgan
Kaufinann.

Woo, C., Evens, M., Michael, J., Rovick, A. 1991.
Dynamic Instructional Planning for an Intelligent
Physiology Tutoring System. In Proceedings of the Fourth
Annual IEEE Computer-Based Medical Systems
Symposium, Baltimore, 226-233. Los Alamitos: IEEE
Computer Society Press.

Woolf, B. 1984. Context-Dependent Planning in a
Machine Tutor. Ph.D. diss., Dept. of Computer and
Information Science, University of Massachusetts at
Amherst. COINS Technical Report 84-21.

Yang, Q. 1990. Formalizing planning knowledge for
hierarchical planning. Computational Intelligence
6(1): 12-24.

Zhou, Y., Freedman, R., Glass, M., Michael, J. A., Rovick,
A. A. and Evens, M. W. 1999. What Should the Tutor Do
When the Student Cannot Answer a Question?. In
Proceedings of the Tweltih Florida Artificial Intelligence
Symposium (FLAIRS ’99), Orlando, FL.




