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Abstract 

                     Autonomy is a quality for devices 
and creatures that perform tasks with 
relative independence from their designers 
and sources of authority. We discuss the 
idea and present two case studies to 
illustrate that the parameters for Autonomy 
are highly domain dependent.  

 
1  Introduction 
 
Autonomy is a quality that is desirable in systems that 
need to be long-lived and with little or no human 
maintenance. There are many examples such as the 
softball-sized flying robot designed to operate 
autonomously onboard manned and unmanned 
spacecraft in micro gravity, pressurized environments, 
(Gawdiak, et al, 1999). The recent debate on autonomy 
attempts to create a single metric that quantifies this 
quality, e.g., (Barber, Goal, and Martin, 2000). We 
believe these metrics are premature and may confuse 
the very concept. In this paper we present taxonomy of 
autonomy and discuss two different implemented 
agents. 
 
          At any given time, an agent forms a sense of 
Autonomy with respect to tasks, emotions, and mental 
states only if it can affect those things. An agent that 
has no ability to “move a rock” either by itself or 
getting someone or something else to do it has no 
autonomy with respect to moving the rock. Therefore, 
an ordinary rock that cannot do anything has no 
autonomy whatsoever. The agent forms its autonomy 
partly by factors that are completely internal to it and 
partly by perception of externally determined 
autonomy. We’ll consider these self- and other-
liberties, respectively introspective and interaction 
sources of autonomy. 
 
          Autonomy needs to be accompanied with two 
concepts: Context and Target. Context of autonomy is 
all the factors that will affect the autonomy and Target 
is the thing about which we have autonomy. We 
believe autonomy is best understood when we define a 
context and a target and the agent has abilities to affect 
the target. Otherwise, we can only make abstract or 
philosophical statements about autonomy and any 

general sense of metrics needs to be refined in order to 
be useful. To be more concrete in this paper, we chose 
to discuss case studies.  
 
          Let's first consider Autonomy that is an agent-
internal quality. This is the introspective view of 
autonomy, (Castelfranchi, 1995, 1997; Hexmoor, et. 
al., 1999a). The agent determines a measure of liberty 
to pursue and to indulge in its own or delegated 
interests. Autonomy is the level of freedom it allows 
itself to form and to pursue its own mental states such 
as beliefs, goals, plans and its own emotions. For 
example, an agent that is self-confident usually allows 
itself to act more autonomously with respect to most 
tasks. An agent's perception of any number of emotions 
such as obligation, pressure, coercion will affect its 
autonomy with respect to its mental states. The internal 
autonomy of an agent is related to externally 
observable behavior that will appear to display a level 
of autonomy. 
 
          Let’s now turn to autonomy that is determined 
external to the agent and may dynamically change by 
other agents. This is the interaction view of autonomy. 
An agent is permitted to have a measure of liberty to 
pursue and to indulge in its own or delegated interests. 
This is often called Social autonomy, (Sickman, et al, 
1994). This notion of autonomy captures a sense of 
independence and power over the target of autonomy. 
Society at large, as well as a team of agents, creates 
deontic systems (i.e., systems of obligation) for each 
agent, involving role, authority, delegation, convention, 
obligation, and responsibility. These are some of the 
elements that make up a context for determining 
autonomy. In an organization with assigned roles and 
tasks, each agent has an externally developed level of 
autonomy. A boss who has to decide tasks for its 
agents may use may factors such as reliability, 
capability, and preference of its underlings to decide a 
level of autonomy with respect to a delegated task. We 
presented a preliminary conceptualization of this in 
(Hexmoor, Lafary, and Trosen, 1999b). 
 
           We believe autonomy can be implemented in 
three ways. The first is by off-line encoding or by 
design. Let’s consider an example where the context is 

From: FLAIRS-00 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved. 



empty and the target is all agent abilities. We can 
prescribe individuals to have either an externally 
imposed full autonomy about all tasks or to have no 
autonomy over any task and to follow a prescribed 
doctrine about all tasks. Autonomy levels of agents in a 
multi-agent system benefit problems differently. There 
has been some experiments that illustrate the tradeoff 
between autonomy and problem complexity, (Barber, 
Goal, and Martin, 2000; Hexmoor, Lafary, and Trosen 
1999b). The second implementation method is to 
perform a fixed cost analysis and to change autonomy 
online. Our case studies in this paper illustrate simple 
cases of this online change. The third implementation 
method is by online learning the utility of given levels 
of autonomy. 
 
          In the remainder of this paper we will discuss 
two agents in completely different domains with 
different targets and contexts. Both of these agents 
show a changing level of autonomy. 
 
2  Case Study I: Air Traffic Control Agent  
 
We have written a program that assists a tower air 
traffic control operator. Just as the operator would, the 
agent monitors the nearby tower sky, processes 
requests for landing, and instructs the pilots with 
maneuvers that maintain safe separation distances and 
collision aversion. The human operator is informed of 
all agent activities. If there is a possible collision 
threat, a pop-up window gives details, shows the 
agent’s choice of action, and the countdown time 
before the agent issues that command. The human 
operator may interrupt the agent and issue his own 
command (Hexmoor and Heng 1999a,b).  
 
          The agent’s autonomy differs with respect of 
each of the two tasks of collision aversion and landing. 
These two tasks are two targets for autonomy. 
 
           The agent receives landing requests and based 
on configuration of planes in the processes of landing 
and perceived criticality of pilot’s need to land, it 
generates landing priorities which ranges form 1-4 with 
4 being the most urgent landing condition. In addition 
to priority, the agent must consider the traffic and 
before allowing a plane to land, the traffic ahead of it 
must be sufficiently clear. The agent uses the priorities 
and landing traffic for determining it autonomy. If the 
priority is 3 or 4, the agent assumes full (set to 1.0) 
autonomy. If the priority is 1 or 2, the agent pops up a 
window for the human operator. It then allows the user 
to override its decisions for 2 seconds. We use a 
counter (t in the equation below) that counts from 0 up 

to 2 seconds in 0.1 increments. This is summarized in 
the following equations. 
 
If 3.0 <= LandingPriority <= 4.0: 
Autonomy = 1.0  

 
If LandingPriority < 3.0: 
Autonomy = (LandingPriority/4.0) + 
(((|LandingPriority – 4.0|) * t) / 2)  
 
          The agent attends to relative distances among 
planes. If two planes come near one another and there 
is prediction of collision, the agent will alert and 
generate evasive maneuvers. Depending of 
configuration of distances and predictions, the agent 
generates a priority number form 1-4. 4 signify the 
most dangerous condition of collision and the time is 
very critical and the human operator may not have time 
to react. In this case, the agent autonomy is set at its 
highest and it handles the collision. With lower 
numbers, the time to possible collision is larger and the 
human operator may want to intervene. So a window 
with a timer is presented to the human operator with 
typical times 5-20 seconds. Let T be the time to 
collision when a possible collision is first detected and 
let t be a counter that counts up to T.  When t  = T, 
Autonomy = 1.0. In general: 
 
Autonomy = (CollisionPriority / 4.0) + 
(((|CollisionPriority – 4.0|) * t) / T) 
 
3  Case Study II: Sheep-dog agent and the 
Shepard 
 
We have written a program that simulates a sheep-dog 
following orders of a Shepard in Penning sheep. The 
dynamics of this scenario are commonplace in most 
organization of human or machines. Although it may 
appear as an esoteric application, the interactions 
between a Shepard and a sheep-dog transfer to other 
domains. You can imagine that a lead satellite may be 
delegating tasks to other satellites or to its interior 
components. 
 
          The sheep-dog may take high level or low level 
orders from the Shepard. We will focus on the task of 
Penning where the sheep-dog walks behind the sheep 
so the sheep is guided into a gated area. This consists 
of moving into a flanking position where the sheep is 
not afraid of the dog but the dog is in a dominant 
position. This dog’s behavior is Flanking. Situated at 
flanking position, the dog moves slowly toward the 
sheep and in a circular pattern around the sheep but 
maintaining a distance called balance. While 



maintaining the balance distance, the dog positions 
itself between the sheep and the gate and moves toward 
the sheep. This is called Driving the sheep. Penning is 
a series of Flanking and Driving. For a novice dog, the 
Shepard may help with instructions that point out the 
flanking position. In certain situations, the Shepard 
may help drive the dog. 
 
          We designed our system focusing on the dog’s 
Penning behavior. We find that the dog’s Autonomy 
with respect to the Penning task is dependent on the 
following parameters: dog’s capability, dog’s sense of 
achievement, dog’s sense of discovery, level of 
communication by the Shepard, and the amount of help 
Shepard gives. The dog’s capability is in turn a 
function of (a) tiredness, and  (b) perceptual acuity. As 
the dog moves around it gets tired. The dog’s freshness 
(1- tiredness) is started at 1.0 at the start and is then 
gradually lowered until a threshold reaches. At that 
time the dog rests and regains its freshness back to 1.0.  
A novice dog may not be able to perceive the correct 
flanking position. If the dog has perfect perception, 
perceptual acuity is set to 1.0. Otherwise, it is a real 
value between 0 and 1.0. If the dog is close to the gate, 
it will experience high achievement and conversely 
being far from the gate gives the dog a low 
achievement. This is implemented as a quadratic 
function that produces a number near 1.0 close to the 
gate and lower real values farther away from the gate. 
If the dog receives help from the Shepard in the form 
of Shepard showing the dog flanking position or 
moving along to help with Driving, the dog’s autonomy 
is lowered. This is implemented by setting any instance 
of Help to 0.2 when Shepard is driving the sheep and 
to 0.1 when it only assists with the correct flank 
position. Otherwise Help is set to 0. If the dog is near 
the sheep and the Shepard is far away, the dog 
experiences a sense of discovery, which positively 
contributes to its Autonomy. This is implemented by 
setting Discovery to 0.2 when the Dog alone is 
handling the sheep and the Shepard is far away. 
Discovery is set to 0.1 when the dog alone is handling 
the sheep but the Shepard is nearby and silent. 
Otherwise, Discovery is set to 0. In this system, our 
dog’s overall autonomy is computed by the following 
equation. Autonomy is adjusted continuously with 
every change in the components of this equation.  
 
Autonomy = (Achievement * Capability) – Help + 
Discovery 
 
           For simplicity, the Shepard’s perception of dog 
autonomy is identical to dog’s. However, agents in a 
team may not correctly perceive autonomy of other 
agents. 

 
Unlike this example, in many multiagent teams, 
flexible autonomy of individuals is very useful. 
Imagine a soccer team where each player has an 
assigned role. Roles limit autonomy with respect to the 
team goal. The dynamics of the game may make it 
necessary for a player to play a role that is not 
assigned. So the player has to increase its autonomy 
with respect to team goal to go beyond its role. 
 
5  Conclusion 
 
In this paper we presented two case studies of 
autonomy to illustrate that parameters as well as targets 
of autonomy are highly domain dependent. What 
makes sense in one domain may not have meaning in 
another. 
 
          In general, autonomy has sources that are 
internal to the agent as well as sources that are imposed 
form being in a community of other agents. 
 
          Clearly, we cannot prescribe an optimal level of 
autonomy without considering nature of the problem. 
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