From: FLAIRS-00 Proceedings. Copyright ' 2000, AAAI (www.aaai.org). All rights reserved.

Latin Hypercube Sampling in Bayesian Networks

Jian Cheng & Marek J. Druzdzel
Decision Systems Laboratory
School of Information Sciences
and Intelligent Systems Program
University of Pittsburgh
Pittsburgh, PA 15260
{jcheng,marek}@sis.pitt.edun

Abstract

We propose a scheme for producing Latin hypercube
samples that can enhance any of the existing sampling
algorithms in Bayesian networks. We test this scheme
in combination with the likelihood weighting algorithm
and show that it can lead to a significant improvement
in the convergence rate. While performance of sam-
pling algorithms in general depends on the numerical
properties of a network, in our experiments Latin hy-
percube sampling performed always better than ran-
dom sampling. In some cases we observed as much
as an order of magnitude improvement in convergence
rates. We discuss practical issues related to storage re-
quirements of Latin hypercube sample generation and
propose a low-storage, anytime cascaded version of
Latin hypercube sampling that introduces a minimal
performance loss compared to the original scheme. *
Keywords: Bayesian networks, algorithms, stochastic
sampling, Latin hypercube sampling

Introduction

Bayesian networks (Pearl 1988) are increasingly popu-
lar tools for modeling problems involving uncertainty.
Practical models based on Bayesian networks often
reach the size of hundreds of variables (e.g., (Pradhan
et al. 1994; Conati et al. 1997)). Although a number
of ingenious inference algorithms have been developed,
the problem of exact belief updating in Bayesian net-
works is NP-hard (Cooper 1990). Approximate infer-
ence schemes may often be the only feasible alternative
for very large and complex models. The problem of
achieving a required precision in approximate inference
is also NP-hard (Dagum & Luby 1993). However, pre-
cision guarantees may not be critical for some types of
problems and can be traded off against the speed of
computation. In all situations where precision is not
of essence, stochastic simulation methods can offer sev-
eral advantages compared to exact algorithms. Execu-
tion time required of exact algorithms depends on the
topology of the network and is generally exponential
in its size and connectivity. In case of stochastic sam-
pling, computation is measured in terms of the number
of samples — in general, the more samples are gener-
ated, the higher precision is obtained. Execution time

! Copyright 2000, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

of stochastic sampling algorithms is less dependent on
the topology of the network and is linear in the num-
ber of samples. Computation can be interrupted at any
time, yielding an anytime property of the algorithms,
important in time-critical applications.

In this paper, we investigate the advantages of
applying Latin hypercube sampling to existing sam-
pling algorithms in Bayesian networks. While Hen-
rion (1988) suggested that applying Latin hypercube
sampling can lead to modest improvements in per-
formance of stochastic sampling algorithms, neither
he nor anybody else has to our knowledge studied
this systematically or proposed a scheme for gener-
ating Latin hypercube samples in Bayesian networks.
We first propose a scheme for producing Latin hy-
percube samples. We then test this scheme in the
likelihood weighting algorithm (Fung & Chang 1990;
Shachter & Peot 1990) and show that it can lead to
a significant improvement in the convergence rate over
random sampling. While performance of sampling algo-
rithms in general depends on the numerical properties
of a network, in our experiments Latin hypercube sam-
pling performed always better than random sampling.
In some cases we observed as much as an order of mag-
nitude improvement in convergence rates. We discuss
practical issues related to storage requirements of the
Latin hypercube sample generation and propose a low-
storage, anytime cascaded version of Latin hypercube
sampling that introduces a minimal performance loss
compared to the original scheme.

All random variables used in this paper are multiple-
valued, discrete variables. Capital letters, such as A,
B, or C will denote random variables. Bold capital
letters, such as E, will denote sets of variables. Lower
case letters a, b, ¢ will denote particular instantiations
of variables A, B, and C respectively.

Latin hypercube sampling

Latin hypercube sampling (McKay, Beckman, &
Conover 1979) is inspired by the Latin square exper-
imental design, which tries to eliminate confounding ef-
fect of various experimental factors without increasing
the number of subjects in the experiment. The purpose
of Latin hypercube sampling is to ensure that each value
(or a range of values) of a variable is represented in the

UNCERTAIN REASONING 287

samples, no matter which value might turn out to be
more important.

Consider the problem of generating five samples from
two independent, uniformly distributed variables X and
Y, such that XY € [0,1]. According to the Latin hy-
percube sampling method, we first divide the range of
both X and Y into five equal intervals, resulting in
5 x 5 = 25 cells (Figure 1). The requirement of Latin

4

2

[HMM»&CH

3
[Y/X][1]2]3]4]5]

Figure 1: A Latin hypercube sample on the unit square,
with n = 5.

hypercube sampling is that each row and each column
of the constructed table contain only one sample. This
ensures that even though there are only five samples,
each of the five intervals of both X and Y will be sam-
pled. For each sample [, j], the sample values of X, Y
are determined by:

X = Fg'((i~1+¢&x)/n) (1)
Y = FpY(—-1+&)/n),

where n is the sample size, {x and &y are random num-
bers ({x,&y € [0,1]), and Fx and Fy are the cumu-
lative probability distributions functions of X and Y
respectively.

Valid Latin hypercube samples can be generated by
starting with a sequence of n numbers 1,2,...,n and
taking various permutations of this sequence. Figure 2
illustrates the samples represented by Figure 1. Each

[Sample [X Y]

Y i QO DN =
Y W] QO] =i BN
] O =] D] G

Figure 2: A Latin hypercube matrix (LHS; 5) form = 2
variables and sample size n = 5.

column of the table corresponds to a variable, each row
to a sample. Each column (please note that the columns
list the row and column number of the corresponding
sample in Figure 1) is a random permutation of the
sequence of integers 1,2,3,4,5. In general, we can ob-
tain Latin hypercube samples of size n for m variables
through randomly selecting m permutations of the se-
quence of integers 1,2, ...,n and assigning them to each
of the m columns of the table. We will call this table, a
Latin hypercube sampling matriz (LHS matrix) LHSy, .

288 FLAIRS-2000

We will now illustrate the process of generation of
n = 100 Latin hypercube samples in the context of a
forward sampling algorithm on a simple network con-
sisting of m = 3 random variables A, B, and C, pre-
sented in Figure 3. We first construct the LHS3 100

A B
C
[Pr(A) |]
a2 0.35 bl 0'6
as 0.45 2 :
a ag Qs
Pr(CIAB) 5T %, o [& | o] 5
a 0.01 |0.04]028]0.06]0.18 | 0.82
2 0.68 | 0.93 | 052 | 0.12 | 0.50 | 0.10
Cs 0.31 | 0.03 [0.20 | 0.82 | 0.32 | 0.08

Figure 3: A simple Bayesian network with three nodes.

matrix for this network, a fragment of which is illus-
trated in Figure 4. Since the algorithm applied will

Sample [A | B [C]
1 25 | 13 | 74
2 14 191] 7

39 || 47 | 32 [56

100] 69 | 4 | 84

Figure 4: A LHSj3 100 matrix for m = 3 variables and
sample size n = 100.

be forward sampling, we need to make sure that the
columns of the LHS matrix follow the topological or-
der, i.e., that parents always precede their children.
The process of sample generation proceeds as follows.
We divide each of the variables A, B, and C into 100
equally sized intervals. If LHS4; < Pr(a;) x 100, we
set the state of variable A in the ith sample to a,. If
Pr(a;) x 100 < LHS4,; < (Pr(a;) + Pr(az)) x 100, we
set the state of variable A to ag, otherwise we set it
to az. If LHSp; < Pr(b;) x 100, we set the state
of variable B to b;, otherwise we set it to b;. The
state of variable C is generated similarly from the con-
ditional probability table based on the states of A and
B. In our example, row 39 of the LHS matrix contains
{47,32,56}. According to the above rule, in sample
number 39, variable A is instantiated to the state ap
and variable B is instantiated to the state b;. Vari-
able C is instantiated to c; since Pr(ci|ag, b1) x 100 <
LHSc,; < (Pr(cilaz,b1) + Pr(ez]az,b1)) x 100. Please
note that Equation 1 requires that we add a random

number between 0 and 1 into LHS,, ;. Since the sam-
ple size n is usually very large and, consequently 1/n
is very small, much smaller than the required precision,
we can ignore this random number in case of discrete
variables.

The above Latin hypercube sampling scheme gives us
a way of instantiating variables to their states that is
applicable to any stochastic sampling algorithm. A gen-
eralized procedure based on Latin hypercube sampling,
is shown in Figure 5.

1. Order the nodes according to their topolog-
ical order, as required by the algorithm.

2. Generate the LHS matrix.

3. For each sample (row of the LHS matrix)
generate corresponding variable states.

4. Use these samples to calculate the desired
probability distribution.

Figure 5: A generalized stochastic sampling procedure
based on Latin hypercube sampling.

The complexity of Latin hypercube sampling is the
same as that of random sampling. A random sample
in the latter corresponds to generation of one element
of the LHS matrix, which involves a call to the random
number generator. An additional step in generation of
one element of the LHS matrix is swapping of matrix
elements, equal to three assignments.

Using the crossed analysis of variance (ANOVA)
decomposition (Efron & Stein 1981), Stein (1987)
has proven that in the problem of estimating I =
f[0-1]" f(X)dX, the variance of stochastic simulation

based on Latin hypercube sampling is asymptotically
smaller than that based on simple random sampling.
In finite samples, Owen (1997) shows that the variance
of Latin hypercube sampling is never much worse than
that of simple random sampling. Roughly speaking, be-
cause Latin hypercube sampling stratifies each dimen-
sion as much as possible and otherwise picks the rela-
tion between different dimensions randomly, it can sig-
nificantly decrease the variance coming from individual
dimensions. Since the stochastic sampling in Bayesian
networks is very similar to stochastic integration, Latin
hypercube sampling can be expected to lead to smaller
variance here as well.

Some improvements to the Latin
hypercube sampling

The main practical problem related to Latin hyper-
cube sampling is that the LHS matrix, which is usu-
ally very large, has to be stored in memory for the du-
ration of the sampling. When both the network size
and the number of samples are very large, this may
become prohibitive. For example, when a network con-
sists of 500 nodes that we want to sample 100,000 times,

we will need at least log, 100,000 =~ 17 bits for each
of the elements of the LHS matrix. This means that
to store the entire LHS matrix we will need at least
17 x 500 x 100, 000 = 850, 000 bits ~ 106 M bytes.

The first solution to this problem that we applied in
our implementation is to store variable instantiations
instead of permutations in the LHS matrix. If we gen-
erate the permutations in the order of sampling, and
the columns of the LHS matrix follow the parent order-
ing, we can compute at each step the outcome of the
variable in question. As most variables have a relatively
small number of outcomes, a few bits usually suffice. If
the maximum number of outcomes of a variable in the
above example is 8, we can use log, 8 = 3 bits per ele-
ment of the LHS matrix instead of 17. Then the entire
matrix will take 3 x 500 x 100,000 = 150 M bits ~ 19
M bytes. In case of networks consisting of only binary
variables, this number can be reduced even further to
approximately 6 M bytes. Another way of looking at
this solution is that it combines steps 2 and 3 in the
algorithm of Figure 5 into a single step.

The second improvement is treatment of the root
nodes in the network. Latin hypercube sampling re-
quires that the states of these nodes are sampled ac-
cording to their prior probability. To achieve this sam-
pling, instead of generating permutations for the root
nodes, we can assign randomly a proportion of elements
in their columns to their states s;: Pr(s;) X n positions
for state s;, Pr(s2) x n positions for state s, etc., as-
signing the remainder of the positions to the last state.
In case of the network in Figure 3, this can save us
P,, xn+ Py, x n = 105 calls to the random number
generator (in this simple example, this amounts to 35%
of all calls!).

Finally, our third proposed improvement is dividing
the LHS matrix into smaller matrices and instead of
working with a large m X n matrix, working with &
m x n/k LHS matrices. While this solution reduces
the precision of sampling (please note that since we use
the number of samples to divide the interval [0, 1], the
number of samples determines the precision), it may
be unimportant when the number of samples is suffi-
ciently large and the probabilities in the model are not
extreme. We will confirm this observation empirically
in the next section. This method, that we call cascaded
Latin hypercube sampling has the advantage of being
anytime, as processing each of the k LHS,, »/, matri-
ces increases precision of the algorithm but the result is
available as soon as the first matrix has been processed.
In the sequel of the paper, we will use the symbolic no-
tation kx LHS to denote a cascaded Latin hypercube
sampling scheme that consists of k steps.

Experimental results
We performed empirical tests comparing Latin hy-
percube sampling to random sampling in the context
of the likelihood sampling algorithm (Fung & Chang
1990; Shachter & Peot 1990). We used two net-
works in our tests. The first network is Coma, a sim-

UNCERTAIN REASONING 289

ple multiply-connected network originally proposed by
Cooper (1984).

The second network used in our tests is a subset
of the CPCS (Computer-based Patient Case Study)
model (Pradhan et ol 1994), a large multiply-
connected multi-layer network consisting of 422 multi-
valued nodes and covering a subset of the domain of
internal medicine. Among the 422 nodes, 14 nodes
describe diseases, 33 nodes describe history and risk
factors, and the remaining 375 nodes describe various
findings related to the diseases. The CPCS network
is among the largest real networks available to the re-
search community at present time. Qur analysis is
based on a subset of 179 nodes of the CPCS network,
created by Max Henrion and Malcolm Pradhan. We
used this smaller version in order to be able to com-
pute the exact solution for the purpose of measuring
approximation error. We used the clustering algorithm
(Lauritzen & Spiegelhalter 1988) to provide the exact
results for the experiment.

We focused on the relationship between the number
of samples in random sampling (in all experiments, we
run between 1,000 and 10,000 samples with 1,000 incre-
ments) and in Latin hypercube sampling (we tried the
straight and cascaded Latin hypercube sampling) on
the accuracy of approximation achieved by the simula-
tion. We measured the latter in terms of the Mean-
Squared-Error (MSE), i.e., square root of the sum
of square differences between Pr'(X;;), the computed
marginal probability of state j (j = 1,2,...,n;) of node
i and Pr(X;;), the exact marginal probability, for all
non-evidence nodes. In all diagrams, the reported MSE
is average over 20 trials. More precisely,

1 > X:(Pr'(i'h'j)—Pr(ﬂh':'))2

ZiEN\E L iEN\E j=1

MSE(t) = J

where N is the set of all nodes, E is the set of evidence
nodes, and n; is the number of outcomes of node i.
Figure 6 shows the MSE as a function of the num-
ber of samples for the Coma network. It is clear that
the Latin hypercube sampling in all three variants out-
performs random sampling. For a given sample size,
the improvement of MSE can be as high as 75%. The
improvement looks even more dramatic when we look
for the number of samples that are needed to achieve
a given precision. Latin hypercube sampling with only
2,000 samples can perform better than random sam-
pling with 10,000 samples. In other words, Latin hyper-
cube sampling can achieve a better precision in one fifth
of the time. For the cascaded versions of the algorithm,
as expected, performance deterioration is minimal when
the number of samples is large enough. For small sam-
ples sizes (e.g., for 1,000 samples), a cascaded version
with 20 steps of 50 samples each performed somewhat
worse because 50 samples divide the interval [0, 1] too
coarsely to achieve a desired precision. Analogous re-
sults for the CPCS network are presented in Figure 7.
Without evidence, typical improvement in MSE due to

290 FLAIRS-2000

005 1

5*&‘;%3“!

] + + + t t t +—t—
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of samples

xh--.iq-.:ﬁ;—._xu.—g._g;

Figure 6: Mean Squared Error as a function of the num-
ber of samples for the Coma network without evidence
for the random sampling (RS) and three variants of
Latin Hypercube sampling (LHS).

0 ———
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of samples

Figure 7: Mean Squared Error as a function of the num-
ber of samples for the CPCS network without evidence
for the random sampling (RS) and three variants of
Latin Hypercube sampling (LHS).

Latin hypercube sampling is on the order of 50%. For
a given error level, typically fewer than one quarter of
the samples was used by the Latin hypercube sampling
compared to random sampling. Cascaded inference in
the CPCS network requires a larger number of samples
to achieve the same precision as pure Latin hypercube
sampling. This is due to the fact that the probabilities
in the CPCS network are more extreme.

Figures 8 and 9 show the results for the Coma
and CPCS networks with evidence. In case of the
Coma network, the evidence was observation of se-
vere headaches without coma. In case of the CPCS
network, we were able to generate evidence randomly

Mean Squared Error
o
8
w

o

B

LN
+

g

L1
Y SO
0001 1 e

N ; 4 R R + N R
0 +—t t + t t

1000 2000 3000 4000 5000 6000 7000 8000 S00C 10000
Number of samples

4

Figure 8: Mean Squared Error as a function of the num-
ber of samples for the Coma network with evidence (se-
vere headaches without coma) for the random sampling
(RS) and three variants of Latin Hypercube sampling
(LHS).

oot T
-——RS
0.008 % —o—S54.HS
E F —a—LHS
0.006
b
&
0.004
g
=2
0.002
0 —

1000 2000 3000 4000 5000 6000 7000 8000 S000 10000
Number of samples

Figure 9: Mean Squared Error as a function of the num-
ber of samples for the CPCS network with evidence (five
evidence nodes chosen randomly from among plausible
medical observations) for the random sampling (RS)
and three variants of Latin Hypercube sampling (LHS).

from among those nodes that described various plausi-
ble medical findings. These nodes were almost all leaf
nodes in the network. We report results for five evi-
dence nodes. When the number of evidence nodes is
much larger, the convergence rates deteriorate for all
versions of the likelihood sampling algorithm. The im-
provement due to Latin hypercube sampling in terms
of MSE is not as dramatic as in the test runs without
or with a small number of evidence nodes.

We have observed that in case of large networks, per-
formance of sampling algorithms depends strongly on
the number of evidence nodes and their topological lo-

Mean Squared Error

12 256 512 1K 2K 4K 8K 16K 32K 64K
Block size

Figure 10: Mean Squared Error as a function of block
size and sample size for the CPCS network without ev-
idence for the Latin Hypercube sampling (LHS).

cation in the network — the closer they are to the leaves
of the tree, the worse. The reason for this is a mismatch
between the sample space (which is in case of likelihood
sampling dominated by the prior probability distribu-
tion) and the posterior probability distribution. This
matches the observations made by Cousins (1993), who
concluded that performance of different algorithms de-
pends strongly on the properties of the network. While
in the networks that we have tested Latin hypercube
sampling was equal to or better than random sampling,
sometimes the improvement was not large. We believe
that in case of large mismatch between the sampling
distribution and the posterior distribution, sampling
simply performs poorly and its performance cannot be
improved much by the Latin hypercube sampling tech-
nique. This does not diminish the value of Latin hyper-
cube sampling, which can be used in combination with
any sampling algorithm, including one that will match
the posterior distribution better.

We also tested the relationship between the block size
in the cascaded version of the Latin hypercube sam-
pling and the MSE for different sample sizes. Figure 10
shows that the cascaded version very quickly achieves
the performance of the original Latin hypercube sam-
pling scheme. As soon as the number of samples in
individual blocks allows for achieving a desired preci-
sion, there is little difference between the performance
of the cascaded and the original scheme. In the net-
works that we tested, block size of 2,000 turned out to
be sufficiently large to achieve the desired performance.

In terms of absolute computation time, we have ob-
served that generation of one Latin hypercube sample
takes about 25% more time than generation of a ran-
dom sample. We believe that this may be related to
large data structures of the Latin hypercube sampling
scheme (the LHS matrix) and resulting decrease in ef-
ficiency of hardware cashing. We would like to point

UNCERTAIN REASONING 291

out that despite this difference, Latin hypercube sam-
pling outperforms random sampling in terms of mean
squared error within the same absolute time.

Conclusion

Computational complexity remains a major problem in
application of probability theory and decision theory in
knowledge-based systems. It is important to develop
schemes that will reduce it — even though the worst
case will remain NP-hard, many practical cases may
become tractable. In this paper, we studied applica-
tion of Latin hypercube sampling to stochastic sam-
pling algorithms in Bayesian networks. We have out-
lined a method for generating Latin hypercube samples
and demonstrated empirically that it leads to significant
performance increases in terms of convergence rate. We
proposed several ways of reducing storage requirements,
the main problem related to practical implementations
of Latin hypercube sampling, and proposed a cascaded
version of sampling that is anytime and that introduces
minimal performance losses. Even though we tested it
only with likelihood sampling, Latin hypercube sam-
pling is applicable to any sampling algorithm and we
believe that it should in each case lead to performance
improvements. The precise advantages will depend on
the numerical parameters of the networks and the algo-
rithm applied. We expect, however, that Latin hyper-
cube sampling should never perform worse than random
sampling.

Acknowledgments

This research was supported by the National Science
Foundation under Faculty Early Career Development
(CAREER) Program, grant IRI-9624629, and by the
Air Force Office of Scientific Research, grants F49620-
97-1-0225 and F49620-00-1-0112. Malcolm Pradhan
and Max Henrion of the Institute for Decision Systems
Research shared with us the CPCS network with a kind
permission from the developers of the Internist system
at the University of Pittsburgh. All experimental data
have been obtained using SMILE, a Bayesian inference
engine developed at the Decision Systems Laboratory
and available at http://www2.sis.pitt.edu/"genie.

References

Conati, C.; Gertner, A. S.; VanLehn, K.; and
Druzdzel, M. J. 1997. On-line student modeling for
coached problem solving using Bayesian networks. In
Proceedings of the Sizth International Conference on
User Modeling (UM-96), 231-242. Vienna, New York:
Springer Verlag.

Cooper, G. F. 1984. NESTOR: A Computer-based
Medical Diagnostic Aid that Integrates Causal and
Probabilistic Knowledge. Ph.D. Dissertation, Stanford
University, Computer Science Department.

Cooper, G. F. 1990. The computational complexity of
probabilistic inference using Bayesian belief networks.
Artificial Intelligence 42(2-3):393-405.

292 FLAIRS-2000

Cousins, S. B.; Chen, W.; and Frisse, M. E. 1993.
A tutorial introduction to stochastic simulation algo-
rithm for belief networks. In Artificial Intelligence in
Medicine. Elsevier Science Publishers B.V. chapter 5,
315-340.

Dagum, P., and Luby, M. 1993. Approximating prob-
abilistic inference in Bayesian belief networks is NP-
hard. Artificial Intelligence 60(1):141-153.

Efron, B., and Stein, C. 1981. The jackknife estimate
of variance. Annals of Statistics 9(3):586-596.

Fung, R., and Chang, K.-C. 1990. Weighting and inte-
grating evidence for stochastic simulation in Bayesian
networks. In Henrion, M.; Shachter, R.; Kanal, L.;
and Lemmer, J., eds., Uncertainty in Artificial Intel-
ligence 5. North Holland: Elsevier Science Publishers
B.V. 209-219.

Henrion, M. 1988. Propagating uncertainty in
Bayesian networks by probabilistic logic sampling. In
Lemmer, J., and Kanal, L., eds., Uncertainty in Arti-
ficial Intelligence 2. Elsevier Science Publishers B.V.
(North Holland). 149-163.

Lauritzen, S. L., and Spiegelhalter, D. J. 1988. Lo-
cal computations with probabilities on graphical struc-
tures and their application to expert systems. Journal
of the Royal Statistical Society, Series B (Methodolog-
ical) 50(2):157-224.

McKay, M. D.; Beckman, R. J.; and Conover, W. J.
1979. A comparison of three methods for selecting
values of input variables in the analysis of output from
a computer code. Technometrics 21(2):239-245.

Owen, A. B. 1997. Monte Carlo variance of scram-
bled equidistribution quadrature. SIAM Journal of
Numerical Analysis 34(5):1884-1910.

Pearl, J. 1988. Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference. San Mateo,
CA: Morgan Kaufmann Publishers, Inc.

Pradhan, M.; Provan, G.; Middleton, B.; and Hen-
rion, M. 1994. Knowledge engineering for large belief
networks. In Proceedings of the Tenth Annual Confer-
ence on Uncertainty in Artificial Intelligence (UAI-
94), 484-490. San Mateo, CA: Morgan Kaufmann
Publishers, Inc.

Shachter, R. D., and Peot, M. A. 1990. Simulation
approaches to general probabilistic inference on belief
networks. In Henrion, M.; Shachter, R.; Kanal, L.;
and Lemmer, J., eds., Uncertainty in Artificial Intel-
ligence 5. North Holland: Elsevier Science Publishers
B.V. 221-231.

Stein, M. 1987. Large sample properties of simula-
tions using Latin hypercube sampling. Technometrics
29(2):143-151.

