
Distributed Multi-agent MSBN: Implementing Verification
Hongyu Geng and Yang Xiang

University of Regina, Regina, Saskatchewan, Canada

Abstract

Multiply Sectioned Bayesian Networks (MSBN) pro-
vide a coherence framework for multi-agent dis-
tributed interpretation tasks. During the construction
or dynamic formation of an MSBN, automatic verifica-
tion of d-sepset and the acyclicity of the overall struc-
ture is desired. Although verification has been im-
plemented in a time-sharing fashion, new issues must
be resolved in order to perform such verification of an
MSBN in a distributed environment. We discuss these
issues and algorithms for verification in a distributed
environment.

Introduction

Bayesian networks (BNs) (Pearl 1988, Jensen 1996),
as commonly applied, assume a single agent paradigm.
Multiply sectioned Bayesian networks (MSBNs) are
extension of BNs to multi-agent systems (Xiang et al.
1993, Xiang 1996). An MSBN is a collection of inter-
related BNs organized into a hypertree structure where
each BN forms the core knowledge of an agent. An
MSBN allows multiple agents to reason distributively
about a large uncertain domain. Figure 1 shows the
subnets of an MSBN.

I)2

ml’2a mmcb memp mupl

1998). These conditions should be verified whenever
multi-agent MSBN system is created or modified.

Roles of Agents

Previous implementation of the verification in WEB-
WEAVR (a research toolkit for normative decision sup-
port systems) is for a centralized environment. In this
work, we extend to a distributed environment, where
each agent/subnet is run on a different machine. To
perform verification, agents must communicate with
each other through a computer network.

Verification may be initiated by any agent who acts
as a root of the hypertree. Other agents will respond
by communicating with neighbors along the hypertree
through socket interfaces. Using the common client-
server model of socket, each agent needs a server to
receive messages from potential callers and a client to
send messages to a neighbor.

"" "" [~ Send racssagcs to child agents

Root cre~s BCNT clients to ~ (~
cormnunicate with BCNT ~
neighbor agents.

I Root INdoor ::
NonRc~t crcntcs BCNT-1 clients ~ ’
to communicate with the neighbors

~

i._~’.. IN°~°°’ I i_..x_.oo., ..I No~oo, J
d"o

 illliiii[::::i:::i

Figure 1: An example of MSBN for neural muscular
diagnosis.

Figure 2: Each agent receives a message from its caller,
and creates multiple clients to communicate with its
child agents, then replies to the caller.

To ensure correct inference, subnets need be orga-
nized under certain conditions. The focus of this pa-
per is on automatic verification of two such condi-
tions and their implementation in a distributed envi-
ronment. One is the d-sepset condition on nodes that
interface a pair of subnets (Xiang 1996). Anther
the acyclicity of the union of all the subnets (Xiang

We distinguish the roles of Root and NonRoot an
agent may play. If an agent initiates communication,
possibly upon user’s request, it works as a Root, oth-
erwise the agent works as a NonKoot. For each execu-
tion of verification, only a single agent plays the role
of Root, but different agents may act as the Root over
different executions. When an agent performs the role

UNCERTAIN REASONING293

From: FLAIRS-00 Proceedings. Copyright ' 2000, AAAI (www.aaai.org). All rights reserved.

of a NonRoot, there is another neighbor agent, acting
as either Root or NonRoot, which requests communi-
cation with this agent. We call the requesting agent
a "caller". A NonRoot agent must reply to its caller
after it finishes its actions. Figure 2 illustrates these
two roles.

Verify d-sepset

The d-sepset condition (Xiang 1996) ensures that vari-
ables shared by two subnets can pass relevant infor-
mation at all cases. It prevents a shared variable to
have non-shared parents that are split into two sub-
nets. The d-sepset between each pair of DAGs of the
MSBN in Figure 1 is {Medn, Cts, Pxut). The verifica-
tion is performed by the TestDsepset algorithm which
calls the algorithm CollectPalnfo.

Algorithm 1 (CollectPaInfo)

/* collect a given variable’s parents information */
input: caller index, a given variable v
begin

collect v’s parent information locally (result is outcnO;
if this agent is not a leaf agent

for each child agent
create a message client to request the child to
perform CollectPalnfo ;

add result from each child agent to outcnt;
return outcnt;

end

CollectPalnfo collects parent information outcnt of
a given variable v. First, the host agent performs an
operation locally to get the parent information of v in
itself. If v has out-parents (parent nodes not in any
sepset) locally, then outcnt = 1. Otherwise, outcnt =
0. Second, the host agent requests all child agents to
get the parent information of v in each child agent.
Finally, the result from each child agent is added to
outcnt and then outcnt is returned. As a result, if
outcnt > 1, then the given variable v has at least two
out-parents, each of which belongs to a different agent.

TestDsepset verifies if all subnet interfaces are d-
sepsets. For any sepnode, if its out-parents exist in
more than one agent, then the sepset which contains
this sepnode is not a d-sepset. Initially, the host agent
collects the parent information of a sepnode v which
is in the union of all intersections with all of the child
agents. If the outcnt of a sepnode v is larger than 1,
then the out-parents of v exist in more than one agent.
Consequently, the sepset with the sepnode v is not a d-
sepset and there is no need to continue. The flag is set
to be false. Otherwise, if all the sepnodes in the union

Algorithm 2 (TestDsepset)

/~ test if all sepset are d-sepsets. */
input: caller index
begin

set flag = true;
union sepsets with all neighbor agents;
for each sepnode x in the union with a child agent

collect out-parent info of x locally;
if this agent is a leaf agent

if outcnt > I
flag = false;

el8e

for each child agent
create a message client to request the child
agent to perform CollectPalnfo to collect
parent info of x;

add the result from each child to outcnt;
if outcnt > 1

flag = false;
if flag = true

for each child agent
create a message client to request the
child agent to perform TestDsepset;

and each result from each child with flag;
return flag;

end

have out-parents in only one agent, the host agent will
request each child agent to perform TestDsepset. The
result from each child agent will be "anded" with the
flag. Finally, the value of flag is returned.

Verify Acyclicity

The union of all DAGs in a MSBN should be acyclic.
Xiang (1998) presents a set of operations to verify the
acyclicity. Here we reinterpret these operations under
a distributed setting. A node in a directed graph is a
root if it has no parent, otherwise a leaf if it has no
child. Verification is based on node marking. If the
union is acyclic, all nodes can be marked one by one
as root or leaf. Otherwise, nodes which form a cycle
are left unmarked as the end.

Four operations, PreProcess, MarkNode, MarkedAil,
and TestAcyclicity, collectively verify acyclicity.

When PreProcess is performed, the host agent only
marks the root or leaf non-d-sepset nodes, and then
asks each child agent to do the same.

The family information of a variable in CollectFam-
ilyInfo refers to the position of the node correspond-
ing to the variable in the graph which consists of all
subnets. When this algorithm is performed, host agent
will collect the family information of the given variable

294 FLAIRS-2000

Algorithm 3 (PreProcess)

Input: caller index
begin

mark non-d-sepset nodes that are root or leaf.
if it has child agents

for each child agent
create a message client to request the child
perform PreProcess;

end

Algorithm 4 (CollectFamilyInfo)

/* collect the family information of the given variable */I
Input: caller index, variable name v.
begin

collect v’s family info locally;
if this agent is not a leaf agent

if node v is a root node or leaf node
for each child agent

create a message client to request the child
to perform CollectFamilylnfo;

handle v’s family info with the collect result from
each child agent;

return v’s family info;
end

v locally. Then, host agent will request its child agents
to collect the family information of v if v is a root node
or leaf node locally. Host agent will handle the result
from each child agent with the local information and
return the final result to its caller.

Algorithm 5 (DistributeMarkNode)

//~ caller is always a neighbor agent ~//
Input: caller index, variable name v.
begin

if v is a d-sepset node of host agent
mark the given d-sepset node v locally;
mark all non-d-sepset root node and leaf node;

if this agent is not a leaf agent
for each child agent

create a message client to request the child
agent to perform DistributeMarkNode;

end

When DistributeMarkNode is performed, host agent
will mark the given variable v. New root nodes and
new leaf nodes might be produced because of the mark-
ing of v. Therefore, host agent will mark the new non-
d-sepset root node and leaf node. If this host agent
is not a leaf agent, it will request its child agents to
perform DistributeMarkNode.

MarkNode can be called by the system or the neigh-
bor agents. First, markCount, a counter, is set to

Algorithm 6 (MarkNode)

/* mark each node when possible ~/
Input: caller index.
Output: markCount-the number of d-sepnodes marked
in the last round.
begin

markCount --- O;
union d-sepsets with all neighbors;
for each unmarked d-sepnode x in the union

if x is a d-sepnode with caller
continue;

call CollectFamilylnfo to collect the family
information of x;
if x is neither root node nor leaf node

continue;
else/* x is a root or leaf in the system */I

markCount ++;
DistributeMarkNode is performed;

for each child agent
create a message client to request the child agent
to perform MarkNode;
add the result from each agent to markCount;

return markCount;
end

count how many nodes will be marked after MarkN-
ode is performed. Second, the d-sepsets with all neigh-
bor agents except the caller are unioned. Third, for
each unmarked d-sepnode v in the union, host agent
performs CollectFamilyInfo to collect the family infor-
mation of v. Fourth, if v is a root node or leaf node
in the system, DistributeMarkNode is performed and
markCount is incremented by one. Finally, if this host
agent is not a leaf agent, it will send a message to
each child agent, requesting each child agent to per-
form MarkNode. Each child agent will reply to the
host agent with its markCount value.

Algorithm 7 (MarkedAll)

/* Check if there is any local/remote node unmarked. ~/
Input: caller index.
begin

flag = true;
if there is local node unmarked, flag = false;
else if this agent is a leaf agent, flag -- true;

else send a message to each child agent
to request each child to perform MarkedAll;

process the flag with the result from each child;
return flag;

end

When MarkedAll is performed, the host agent first
sets flag to be true; If there is any unmarked node

UNCERTAIN REASONING295

locally, then flag = false, and host agent will reply
to its caller with the value "false". Otherwise, it will
request its child agents to perform MarkedAll. If any
one child replies to it with a "false" value, the flag of
the host agent is false. Finally, host agent will reply to
its caller with the value of its flag.

Algorithm 8 (TestAcyelicity)
/*Host agent test if there is a cycle in the union of all
subnets in the system. */
Input: caller index, message type
begin

/* PreProcess phase */
if msgType == PREPROCESS

agent perform PreProcess;
/* MarkNode phase */
else if msgType == MARKNODE

do { /* NonRoot only performs one round *//
agent perform MarkNode and return a value
of markCount;
if this agent is not a Root agent

markCount = O;
} while (markCount != 0};

/* MarkedAU phase */
else if msgType --= MARKEDALL

agent performs MarkedAll;
end

The top-level algorithm TestAcyclicity combines the
others to verify the acyclicity, msgType here stands for
the type of message that the host agent receives from
its caller. The host agent can be called by system or
one of its neighbor agents to perform this algorithm.
This algorithm is performed differently by an agent
depending on whether this agent acts as a l~oot or
NonRoot. The differences are two-folded. Firstly, if
the host agent is a Root, the system will call the host
agent to perform the three phases of the algorithm,
PreProcess, MarkNode and MarkedAll, sequentially to
perform this algorithm. Otherwise, the host agent will
perform one phase of the algorithm once according to
the message type. Secondly, when MarkNode phase
is performed, l:toot will repeatedly perform MarkNode
until there is no nodes to be marked in the last round
(markCount = 0). NonRoot agent will only perform
MarkNode for one round when it receives the request
and will return the value of markCount to its caller.

The complexity of TestAcyclicity is polynomial on
the number ofsubnets as well as the size of each subnet
(Xiang 1998). Our distributed implementation does
not increase it.

Implementation
Both verification and inference in a distributed multi-
agent MSBN requires communication among agents.
We designed a generic framework such that some mod-
ules can be reused and other modules only need to be
modified slightly for different functions.

..

, Agent ,.’. MsgClient :)
Jl ¯ "

tA :

’, ,:.~Cnent)
’. _’2:::::."

Figure 3: Each agent has a Courier and an AgentAc-
tions.

(~) AetAtPtMsg

(~ Msk~FoChild

® M~,FmCtm
® A~tC~

Figure 4: Each agent has six actions. Two (in dotted
cycles) are performed by Courier, and the other by
AgentActions.

Each agent has a Courier and an AgentActions, and
can create multiple MsgClients when needed. Courier
is responsible for receiving from caller and replying (if
this agent is not Root) after the agent performs some
actions according to the message type and the proto-
col. Courier is reused in all functions which involve
communication. AgentActions perform four sequential
actions after the Courier receives a message from the
caller. If the agent is not a leaf in the hypertree, it cre-
ates multiple clients. Each client corresponds to one
child agent and is called MsgClient, to communicate
with one child agent. Figure 3 shows the structure.

Figure 4 shows the flow of a host agent’s actions.
Courier has two actions, MsgFmParent and MsgTo-
Parent. MsgFmParent performs an action which re-
ceives messages from the caller and processes the mes-
sages. MsgToParent performs an action to reply to

296 FLAIRS-2000

Figure 5: Four sequential actions of an

the caller after the host agent performs some other
actions. The four sequential actions of AgentActions,
which are ActAtPtMsg, MsgToChild, MsgFmChild and
ActAtCdMsg, are performed after the host agent re-
ceives a message from the caller (that is, after Ms-
gFmParent is performed.). ActAtPtMsg is the action
that an agent takes after it receives message from its
caller. MsgToChild is an action which prepares mes-
sages for child agents and creates multiple clients to
communicate with child agents. MsgFmChild is an ac-
tion which waits for messages from all child agents and
processes the messages it receives. The agent performs
ActAtCdMsg after receiving reply from all child agents.

If an agent works as Root, it replies to no one and
MsgToParent is not performed. If an agent is a leaf
agent, it has no child agent and MsgToChild and Ms-
gFmChild are not performed. Otherwise, an agent per-
form all six actions.

A special operation is performed in each action ac-
cording to the type of the message it receives from
its caller. For example, if the message type is "PRE-
PROCESS", then operation of ActAtParent is to mark
all the non-d-sepnodes which are leaf nodes or root
nodes locally. The operation of MsgToChild is to set
message type for each message and to create multi-
ple MsgClients to communicate with all child agents.
The operation of MsgFmChild is to wait for the re-
ply from each child agent. Because PreProcess does
not need to do anything after the agent receives re-
ply from each child agent, the agent will not perform
the last action-ActAtChild. Figure 5 shows an agent’s
sequential actions and the content of each action.

This framework can not only be used in the verifica-
tion of MSBN, but also in other operations in a multi-
agent MSBN. For instance, we can implement triangu-
lation or inference in a similar manner. Courier, Agen-
tActions MsgClient can be used directly. What we need
to change are the content in each action. Inference in
distributed MSBN is thus implemented (Geng & Xi-
ang 1998). Therefore, this design provides a unified
framework for implementing all operations of MSBN

agent. A leaf agent only has the first action.

including Verification, Triangulation, and Inference.

Conclusions
This paper discusses implementation of verification in
distributed multi-agent MSBNs. We present a generic
framework for implementing similar operations which
requires communication among agents. We have tested
the implementation experimentally. One limitation of
the implementation is that when more than one agent
try to initiate verification simultaneously, the system
may not function correctly. Future research is needed
to resolve the issue.

References
[1] Geng, H., and Xiang, Y. 1999. Implementation of Fully

Distributed Inference in Multi-agent MSBN Systems.
In Proc. IEEE Canadian Conf. on Electrical and Com-
puter Engineering, 1698-1703, Edmonton.

[2] Jensen, F. V. 1996. An Introduction to Bayesian Net-
works, New York: Springer.

[3] Pearl, J. 1988. Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference, Los Altos,
CA: Morgan Kaufmarm.

[4] Stubbs, D. F. and Webre, N. W. 1987. Data Structures
with Abstract Data Types and Modula-L Pacific Grovce,
CA: Brooks/Cole.

[5] Xiang, Y., Poole, D. and Beddoes, M.P. 1993. Multiply
Sectioned Bayesian Networks and Junction forests for
Large Knowledge-Based Systems. Computational Intel-
ligence. 9(2): 171-220.

[6] Xiang, Y. 1996. A Probabilistic Framework for Co-
operative Multi-agent Distributed Interpretation and
Optimization of Communication. Artificial Intelligence,
(87): 295-342.

[7] Xiang, Y. 1998. Verification of DAG Structures in Co-
operative Belief Network Based Multi-agent Systems.
Networks, 31: 183-191.

UNCERTAIN REASONING 297

