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Abstract
This paper describes a new framework for using natural
selection to evolve Bayesian Networks for use in
forecasting time series data.  It extends current research by
introducing a tree based representation of a candidate
Bayesian Network that addresses the problem of model
identification and training through the use of natural
selection. The framework constructs a modified Naïve
Bayesian classifier by searching for relationships within the
data that will produce a model for the underlying process
generating the time series data. Experimental results are
presented that compare forecasts in the presence of multiple
sources of information made using the naturally selected
belief network versus a random walk.

Introduction
Recent literature in the fields of Data Mining and
forecasting has included articles outlining new approaches
for forecasting time series data utilizing Bayesian
Networks[1]..A Bayesian Network is a directed acyclic
graph with nodes representing the attributes of the model
and directed links representing a causal relationship
between parent and child.  Together, this information
represents the dependence between variables and gives a
concise specification of the joint probability of the model
[2].  Significantly, it provides a white box approach to
representing relationships that exist within the domain
being modeled and can handle inferencing in the absence
of complete information.

One area of particular interest is the way in which
both the structure and values of network representations
can be learned from the data alone. To this end, a
significant amount of work has been done on learning the
network structure given an identified set of attributes of
the data to be modeled. However, in the case of
forecasting a time series, each past value becomes a
potential attribute for use in the network model describing
the process that produced the time series. This increase in
computational complexity, plus the ability to enhance the
forecast model using data sources external to the time
series being forecast, underscores the need for an
autonomous method for identifying the forecast model.
Examples of frameworks that address these issues in the

context of using Bayesian Networks to forecast time
series data include [3,4].

The framework presented here relies upon
evolutionary computing to derive a valid forecasting
model from the time series to be forecast by using Genetic
Programming. Genetic Programming [5] is a search
method based on the mechanics of natural selection [6]
that has been adapted to manipulate tree based models.
There is a strong potential, as evidenced in completed
work such as Kennedy et. al.[7] and De Jong et. al.[8], for
evolutionary programming to have a positive impact on
the identification of appropriate Bayesian network models
through correct encoding of the network structure and
proper choices of fitness functions.

One of the most promising aspects of using a genetic
programming framework for the identification of
Bayesian networks is the closeness the two approaches
already share.  For example, Ramoni and Sebastiani [9]
point out that learning both the Belief Net's parameters
and structure from available data can be viewed as a
search problem for identifying a suitable Bayesian
network for modeling the sample data.  Heckerman also
discusses this by pointing out several methods for
selecting candidate network representations, in addition to
discussing various methods for evaluation the fitness of
the learned representation with respect to the sample data.

A Bayesian Network Approach to
Forecasting

The Evolutionary Bayesian Network approach utilizes a
Bayesian network to model a stochastic process. The
network combines conditionally dependent and
independent information to produce a model of the
stationary process producing the first difference in the
time series being forecasted.

Consider the time series Yt that is passed through a
differencing mechanism to produce the series Zt. The
series Zt can then be represented by the model:

),,...,,( 111 −−+ = ttttt aaZZmZ [Eq. 1]

where at, at-1, … are a set of independent, identically
distributed random variables and m() is a function both
the previous values of Z and the random variables a.

One of the simplest models m() is that of the Random
Walk:
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ttt aZZ +=+1 [Eq. 2]

The Random Walk, first discussed by Bachelier in
1900 [10], has been used as the de Facto standard of
comparison for methods that forecast future values in the
stock market.  The predictive model for the Random Walk
is:

][ˆ
1 ttt aEZZ +=+ [Eq 3]

Assuming that at  is    normally distributed with mean
equal to 0, Eq 3 becomes:

tt ZZ =+1
ˆ [Eq 4]

and will be used as the baseline model predictor that the
Bayesian Network model predictor is compared to.

The Bayesian model representation of Eq 1 is:
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[Eq 5]

where min(Z) and max(Z) are the minimum and
maximum possible values of Z and δ is a continuous
variable representing the possible values for Z at time t+1.

Although possible to work with predictors that use the
continuous value δ, the framework discussed in this paper
relies on the set of discrete values D, containing elements
{d1, d2, …}. The values of D are defined for the predictive
model by dividing up the range (min(Z),max(Z)) into N
discrete ranges R with boundaries λ,such that:

11)min( λ≤< RZ [Eq. 6]

iii R λλ ≤<−1   for i=2,…,N-1 [Eq. 7]

)max(1 ZRNN <<−λ [Eq. 8]

with di defined as:

1
1 λ=d [Eq. 9]
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  for i=2,…,N-1 [Eq. 10]

)max(Zd N
N == λ [Eq. 11]

Given the values of D, the predictive model is defined
as a Bayesian Classifier. The classifier is trained using a
set of attributes that relate values of di with prior values of
Z and returns the predicted value for dt by utilizing the
maximum a posteriori hypothesis to create:
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Initially, the simplifying assumption is made that the
prior values of Z are conditionally independent given the
value of Z at time t. Based on this assumption, Eq 14 can
be rewritten as the Naive Bayes Classifier:
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The computational impact of using the Naive Bayes
classifier is important. It greatly reduces the amount of
storage and number of calculations required to represent
the Bayesian network. This is significant in an natural

selection environment where all members of the
population must be created, trained, and then tested for
fitness during each generation. However, the simplifying
assumption of conditional independence between prior
values of Z means that the MAP hypothesis will only be
returned when this assumption is true. This is not the case
when a process has an autoregressive component to it.
Therefore, it is necessary to support the case where the
value of Zt is conditionally dependent on a subset of the
values of Z at prior times.

The framework supports the possibility of
autoregressive components by moving from a Naive
Bayes classifier to a simple Bayes classifier, defined as:
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where L is the subset of lags {l1, l2, l3, …}from K, the set
all lags {0,1,…,t}.

The last improvement the framework makes to the
basic classifier is the application of Occam's Razor to the
number of terms used within the classifier. This subset of
K, K' is then used giving:
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Figure 1 shows a sample classifier, in network form,
for Zt+1 that relies on the conditionally dependent terms
{Z t-2, Zt-3} and the conditionally independent terms {Zt-1,

Zt-5}.

Natural Selection
Given the desired form of the Evolved Bayesian

Network model, it is necessary to specify a tree structure
that will satisfy the requirements of the natural selection
process. Specifically:
1. The tree structure must allow for the possible selection

of any Zt-i into either the conditionally independent or
conditionally dependent section of the network.

2. The tree must allow for the dynamic specification of
range mapping (positioning of λ's) during the
quantitization process of individual states for each
variable node.

3. The tree must not inhibit the genetic operators used in
the natural selection process.
The tree used by the natural selection framework to

evolve populations of member Bayesian Networks is best
described as a set of trees within a tree structure.  The root
tree, shown in Figure 2, is used to describe the member
variables contained within the network and the
conditional relationships between them. Each node
contains a single integer attribute that will be used to
determine some aspect of the network based on the node's



position relative to the root. The first child node always
represents Zt, while each of the remaining children
represent the remainder of the Zt-i's used in defining the
predicting model.  Specification of the Zt-i being
represented by a particular node is encoded in that node's
value.

Zt+1

Zt-1

Zt-2 Zt-3

Zt-5

Figure 1 -A Simplified Bayesian Network for
Selecting di.

Zt+1 Zt-3

Dependent

Zt-5

Independent

Zt+1 Zt-5

Zt-3

Figure 2 - A Sample Root Tree and the Bayesian
Network it represents.

Each node contained within the root tree contains a
subtree that encodes the λs used to partition the interval
(min(Z), max(Z)) into discrete categories.  During the
natural selection process, high level belief networks can
be modified by adding or removing subtrees to the
immediate child level of the root tree. Enhancements to
the low level quantitization information is made by
attaching new subtrees to the children of the nodes
representing variables in the network. Since the value of
the node in the genetic encoding is the same in all cases,
the listed constraints are met.

The Genetic Programming Framework
The Genetic Programming framework takes a series to

be forecast, a set of related data series to be used in
predicting the forecast value, and a set of parameters that
drive the process. The main algorithm imports the data
(Yt). converts the series to be forecast into the desired
difference model (Zt) and then divides the data into
training, test, and evaluation subsets. Next, the
evolutionary search mechanism is invoked and relies
upon Netica, a commercial off the self (COTS) product
with a programmable Applications Programmer Interface,
to build, train, and provide probabilities for the query
node during forecasting. A series of independent runs are
completed, with each run consisting of applying the
reproductions, crossover, and mutation operators to

produce a series of generations of potential Bayesian
Networks.  The best individual across all generations of
all runs is kept and used for the final forecast.  Once the
final forecast is made, it is compared against a Random
Walk as a relative performance measurement.  Both the
resulting forecast values and performance statistics are
preserved for post processing purposes.

The evolutionary part of the algorithm derives from
the use of reproduction, crossover, and mutation to
generate a new population from an old one. The choice of
using crossover or reproduction to add members to the
new population is based on the desired percentage of new
members generated using reproduction. For example, it
30% of the new population is to be generated by
reproduction, then the remaining 70% will be generated
by crossover.  Reproduction is the selection of an
individual to be carried forward as-is into the next
generation. The random selection of individuals is made
using a probability distribution based on the linear fitness
ranking [11] of the population.  Members with the best
fitness values are higher ranked and therefor selected
more often.

Crossover is the creation of two new members by
randomly selecting two existing members (possibly the
same member twice) of the current population in the same
manner as reproduction. Then a single link in each of the
individuals is randomly selected and broken to create an
upper and lower partial tree. The upper tree of the first
individual is combined with the lower tree of the second
individual and the upper tree of the second individual is
combined with the lower tree of the first individual two
create two new members for the next generation.
Mutation is defined as randomly changing the value of a
node within the tree representation of an individual.  This
operation occurs with a very low probability and is
intended to displace the individual if it becomes stuck in a
local minimum.

In order for the Evolving Bayesian Network
framework to utilize the given tree representation to
encode the Bayesian network it was necessary to add one
adaptation related to crossover and mutation. Since
crossover could occur between arbitrary points, it is
possible that the act of crossover or mutation could
change either the number of nodes in the network or the
organization of the categories that each node was broken
into. Therefore, the member trees had to be scanned for
validity.  If a tree was found to be invalid it was kept in
the population but given a very low fitness ranking.
Invalid trees were added to the end of the ranked list after
being sub ranked by their complexity, with the least
complex being given a better rank position.

Once the tree is transformed into a network, training
commences. Fitness is computed by using the individual
Bayesian Network to select the most likely value of the
time series for the next time period given information
from previous values of the time series. Training is



accomplished making a subset of the data available to the
Netica case based learning functionality after the
candidate tree was defined.

Once training is completed, the individual is measured
for fitness, using the fitness function, F(), defined as:

),ˆ(1)( ZZMNSEmemberF i −= [Eq. 16]

where MNSE, the Mean Normalized Square Error, is
computed as:
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Fitness is measured by using the trained network to
forecast values for the subset of Z set aside for testing.

This process is then repeated for the selected number
of runs, generations, and population size until the best
Bayesian Network is produced by the framework. The
resulting Bayesian Network is then used to forecast values
for the remaining subset of Z set aside for the purpose of
evaluating the forecasting method against a Random
walk.

The success of the search process depends on new
individuals being created from the most relatively fit in
the current population.  A fitness value for an entire
member is considered to be shared by each member of the
power set of individual sub trees it contains. These
subtrees, or schemata, are then combined during the
generation of a new population to create, in theory, a
more robust population that will produce increasingly fit
individuals.  Unfortunately, this technique is not
guaranteed to converge to the best fit individual and
therefore requires the use of large populations randomly
sampled to create the initial population such that as many
schemata as possible are represented.

Experimental Results
Table 1 shows the overall results of forecasting for the

GM time series given the number of records to hold back
for testing, and the method used to provide the forecast.
Each forecast consists of 40 one step ahead predictions
using a network that was evolved using a time series with
942 values. Available historical data was delivered as a
single record consisting of the 19 previous values of the
variable. The HLD column indicates the number of
records held back for the testing of the network.  The
remaining 942 – HLD records  were used in the natural
selection of the Bayesian Network and its supervised
training.  Each experimental forecast was made using a
population of size 25, evolved through 15 generations,
with the natural selection process repeated five times per
forecast.  This was sufficient to allow the process to
achieve convergence when 70% of the population tested
better than the random walk.  In addition to the uni-
variate forecast, represented by MAP in the METHOD
column, experimental results were compiled for the multi-

variate method M-MAP (allowing the framework to build
a network utilizing information from other securities) and
for the random walk, RWALK.

HLD METHOD GNS RNS MNSE TRN MNSE EVL MAPE EVL
40 MAP 15 5 0.001647 0.001434 1.6317%
40 M-MAP 13 3 0.001615 0.001440 1.6576%
40 RWALK 0.001662 0.001457 1.6032%
60 MAP 12 3 0.001554 0.001612 1.6768%
60 M-MAP 15 3 0.001611 0.001376 1.5040%
60 RWALK 0.001659 0.001457 1.6032%
80 MAP 9 4 0.001425 0.001805 1.6845%
80 M-MAP 11 12 0.001475 0.001472 1.5958%
80 RWALK 0.001477 0.001457 1.6032%

Table 1 - Experiment Results for Forecasting the
Future Value of GM Stock Prices.

The last three columns contain information on the
forecasting error obtained when comparing the actual
value of the series to the forecast value produced by the
best individual produced by the evolutionary process.
This information has been split into three columns;
MSNE TRN, MSNE EVL, and MAPE EVL.  MSNE
TRN contains the Mean Square Normalized Error for the
indicated number of records held back for the testing of
the trained network.  MSNE EVL contains the MSNE for
the final set of records used to evaluate the trained
network on information not seen during the selection
process.  The MAPE EVAL column provides the Mean
Average Percent Error between the true and forecast value
for the training record set and the evaluation record set of
the most fit member of the evolved population.  MAPE
was provided as an accepted standard of error evaluation
and was not used in the process of naturally selecting the
Evolved Bayesian Network used to provide the forecasts.
Figure 3 shows the complete dataset for the GM Stock
Price time series.  This series shows a generally rising
trend over time. For the GM forecast, the winning
Bayesian network from the natural selection process,
shown in Figure 4 relied upon the previous price of GM
stock, in addition to previous prices from the GE and IBM
stock as well.  This network was used to generate the
forecast shown in figure 5. Figure 6 shows the Average
Percentage error for each of the forecast values generated
during the evaluation phase of the framework.

Discussion
Overall, the framework for naturally selecting

Bayesian Networks outperformed the Random walk, but
not by a large margin.  The best forecast was delivered by
an Evolved Bayesian Network with a holdback of greater
than or equal to 60 records, 20 records more than the
number forecast during the evaluation phase of the
framework. Additionally, the best MAPE EVAL value
belonged to the same forecast that contained the best
MSNE EVAL value. The forecasting results for the best
naturally selected Bayesian Network were within 4% for
first 7 values and 5% for remaining values over the data



held back for evaluation of the selected time series. It is
interesting to note that the selected forecast model holds
within the noted error tolerance over an extended period
of time without requiring retraining of the network.
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Figure 3 -  The GM Stock Price Time Series.
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Figure 4 - The Bayesian Network Model for the
Price of GM Stock.

1 5 9 13 17 21 25 29 33 37

Time

P
ric

e

Actual GM Forecast GM

Figure 5 - The Forecasted Price of GM Stock.

Based on the initial results, it would be interesting to
see if the selected nodes and their accompanying
probabilities could be mapped directly to the coefficients
of an ARIMA model with some degree of utility. It would
also be interesting to study the effect on the applicability
of using the Model Averaging method is each of the
available hypothesis were significantly different.

Conclusions
The problem of identifying and training a model that

can be used to forecast the value of a time series given
historical data has been the focus of much research.  The
method discussed in this paper combines natural selection
with a Bayesian Model. The resultant forecasting
framework shares similar model components with the
Box and Jenkin's ARIMA model and has been
experimentally shown to evolve Bayesian Networks that
perform better than a random walk.

The framework for naturally selecting Bayesian
Networks was also able to separate the classification of
data points into relevant attributes from the process of
using the discovered attributed in the high level
forecasting model.  This resulted in allowing the operators
involved with the genetic programming based search of
the model space to cause changes in the quantitization
levels of selected attributes to occur more frequently than
the organization and addition/removal of the attributes
themselves. In essence, the natural selection process
would move the search to a high probability area of
success, and then allow for refinement of the selected
model to obtain the best solution in that locality.
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Figure 6 - The Average Percent Error of the
Forecasted GM Stock Prices.
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