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Abstract

Today there are numerous tools for decision analysis,
suitable both for human and artificial decision makers.
Most of these tools require the decision maker to pro-
vide precise numerical estimates of probabilities and
utilities. Furthermore, they lack the capability to han-
dle inconsistency in the decision models, and will fail to
deliver an answer unless the formulation of the decision
problem is consistent. In this paper we present an al-
gorithm for evaluating imprecise decision problems ex-
pressed using belief distributions, that also can handle
inconsistency in the model. The same algorithm can
be applied to decision models where probabilities and
utilities are given as intervals or point values, which
gives us a general method for evaluating inconsistent
decision models with varying degree of expressiveness.

Introduction
Today there are numerous tools for decision analysis,
suitable for both human and artificial decision makers1

(Younes & Boman 1999). Most of these tools are based
on classical decision analysis, thus requiring precise nu-
merical estimates of probabilities and utilities. This has
often been considered unrealistic in real-life situations,
and a number of models with representations allow-
ing imprecise statements have been suggested (see, e.g.,
(Good 1962; Smith 1961; Dempster 1967; Shafer 1976;
Chen & Hwang 1992; Lai & Hwang 1994)). In this pa-
per we will focus on the theory of belief distributions
(Ekenberg & Thorbiörnson 1997; 1998)—in particular
the numerical realization of the computational proce-
dures of the theory.

A further problem with current tools is that they re-
quire the decision maker to be consistent. In classical
models, cf. (Savage 1954), the only constraint is usually
that possible outcomes of a probabilistic event must be
exhaustive and mutually exclusive—i.e., the sum of the

Copyright c© 2000, American Association for Artificial In-
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1With an artificial decision maker we mean a software
agent, or robot, that applies decision theory to the decision
problems it is faced with. In the rest of the paper, unless
specifically noted, the term decision maker will denote both
human and artificial decision makers.

probabilities must equal 1. With the increased express-
ibility of models allowing imprecise information, it be-
comes very hard for the decision maker to be consistent.
The algorithm we present in this paper does not com-
pletely enforce consistency. Instead a measure of the
inconsistency in a decision model is used to automati-
cally generate a consistent model that can be properly
evaluated. The same inconsistency measure can be used
in simpler models as well, where probabilities and util-
ities are given as intervals or point values, which gives
us a general method for evaluating inconsistent decision
models with varying degree of expressiveness.

The first section provides the reader with a brief the-
oretical background, introducing the fundamental con-
cepts of the theory of belief distributions, and explain-
ing how the evaluation of the arising decision models
is carried out. In the following section, we describe an
algorithm for numerically realizing the computational
procedures given by the theory, and in the section after
that we describe how the algorithm applies to a range of
decision models of varying complexity. We conclude the
paper by discussing possible variations of the inconsis-
tency measure, as well as directions of future research.

Theory
In this section we introduce the basic concepts of the
theory of belief distributions, necessary for understand-
ing the algorithm presented in this paper. For details,
the reader is referred to (Ekenberg & Thorbiörnson
1997).

When faced with a decision problem, the decision
maker must first model the problem before it can be
analyzed. Consider a decision situation (D) consisting
of a set of n alternatives

{{cij}j=1,...,mi}i=1,...,n

where each alternative is represented by a set Ci of mi

consequences. In classical decision theory, probabilities
and utilities of consequences are assigned precise nu-
merical values. The decision model would then contain
statements like “the probability of c11 is 0.17”. This
often gives a pretense of accuracy, as decision makers
in most realistic situations lack foundation for prefer-
ring a certain value (e.g., 0.17) to other values close by.
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This problem is addressed in supersoft decision theory,
which allows assessments of probabilities and utilities
to be represented by vague and imprecise statements
(Malmnäs 1995). These could be qualitative statements
like “consequence c11 is very probable”, or comparative
statements like “consequence c11 is at least as desirable
as consequence c12”. Such linguistic statements can
be translated to a numerical format (Malmnäs 1994),
where qualitative statements are represented by inter-
vals (e.g., p11 ∈ [a, b]), and comparative statements are
represented by inequalities (e.g., u11 ≥ u12). Thus, each
statement is translated into one or more constraints.
Danielson and Ekenberg (1998) investigates methods
for evaluating decision models of this type.

All constraints involving probabilities, together with∑mi
j=1 pij = 1 for each set of consequences, form a prob-

ability base (P). Similarly, the constraints involving
utilities form a value base (V). The solution set of P is
the set of all possible probability distributions over the
consequences (EP). However, a decision maker does
not necessarily believe equally much in all of the dis-
tributions in EP . To allow for a differentiated belief,
a distribution can be defined for EP , assigning a belief
intensity to each of the probability distributions. The
support of the belief distribution—a subset of EP—is
then taken to be the set of all possible probability mea-
sures for the decision maker.

A similar belief distribution can be defined for the
set of all epistemologically possible utility distributions
(EV), where EV is the solution set of V.

Global Belief Distributions
As was mentioned above, a decision maker might not
believe with the same intensity in all possible probabil-
ity or utility measures. For each set Ci of consequences,
we define the cell for Ci to be the unity cube [0, 1]mi.
We further define the cell for a consequence cij to be the
interval [0, 1]. Given a cell B = (b1, . . . , bk), a global be-
lief distribution over B is a positive distribution g such
that ∫

B

g(x)dVB(x) = 1,

where VB is a k-dimensional Lebesgue measure on B.
Note that if the decision maker can specify a global

belief distribution g over a cell B, representing a class
of probability distributions, then there is no need for
specifying an explicit set of constraints P. This is be-
cause the support of a global belief distribution g is
the solution set to the probability base, i.e., EP is the
support of g. Similarly, EV is the support of a global
belief distribution g′ defined over a cell B′ representing
a class of utility measures.

Local Belief Distributions and Constraints
However, it is seldom possible for a decision maker to
specify global belief distributions. Often, the decision
maker has access to local information and various rela-
tions between different variables only. When this is the

case, local belief distributions have to be defined over
the cells for each single consequence cij.

Given a cell B = (b1, . . . , bk), a local belief distribu-
tion over B is a positive distribution fi such that∫

bi

fi(xi)dVbi(xi) = 1,

where Vbi is a Lebesgue measure on bi. In addition,
relations between local distributions can be expressed
with a set of constraints. In this paper, we will only
consider linear constraints of the form∑

i

aixi < b,

where < is any of the relations =, ≤, or ≥.

Evaluation
The evaluation principle presented here is based on the
principle of maximizing the expected utility. Given
a decision situation D, a probability base P, and a
value base V, the expected utility, denoted E(Ci), is∑mi
j=1 pijuij, where pij and uij are variables in P and

V respectively.
Ekenberg and Thorbiörnson (1997) suggest how be-

lief distributions can be accounted for in the evaluations
of E(Ci). A generalized expected mean value G(Ci) is
defined. G(Ci) can be evaluated by the use of cen-
troids.2 If xpi is the centroid of the belief distribution
for (pi1, . . . , pimi), and xui is the centroid of the be-
lief distribution over the corresponding utility variables
(ui1, . . . , uimi), then G(Ci) is 〈xpi , xui〉. Furthermore,
given certain restrictions, the centroids of the local dis-
tributions can be used in a similar way to evaluate the
generalized expected mean (Ekenberg & Thorbiörnson
1997). Thereby, the complexity of the evaluations can
be logarithmically reduced.

Inconsistency Measure
The use of local belief distributions and constraints
might however introduce a problem. Given local belief
distributions fpi(j) for the probability variables, and a
set of linear constraints P, it may be the case that the
centroids xpi(j) of the local belief distributions are not
consistent with the constraints. Let xp denote the vec-
tor

(xp1(1), . . . , xp1(m1), xp2(1), . . . , xpn(mn)).

We have a conflict if xp is not on the polytope defined
by P, i.e. there is a positive belief in a vector not consis-
tent with the constraints. This means that the decision
maker, to be consistent, has to modify either the be-
lief distributions or the constraints (or both). When an
inconsistency occurs, we could still calculate the gen-
eralized expected mean value by choosing a vector x′p
consistent with P, but the problem is how this vector

2Intuitively, the centroid of a distribution is where the
belief mass is concentrated.



should reasonably be selected. A prima facie solution
is to let x′p be the vector, consistent with P and with
the least Euclidean distance to xp. Since the vector
xp represents the center of belief mass, by minimizing
the Euclidean distance we express a bias towards vec-
tors consistent with P that are close to the vector where
the belief mass is centered. The rationale for this choice
is that, unless the belief distributions are very irregular,
these are likely to be the vectors consistent with P in
which the decision maker has the highest belief.

One inconsistency measure implementing this strat-
egy is

1
2
‖x′p − xp‖2. (1)

The vector x′p − xp can be used as guidance for a de-
cision maker on how to adjust the model. To lower
the inconsistency of the probability base, the decision
maker could, for example, modify the belief distribu-
tions so that xp is moved in the direction of this vector.

Equation 1 works only when the set of linear con-
straints in the probability base is consistent. Further-
more, only the constraints

∑mi
j=1 pij = 1 are forced upon

the decision maker by the axioms of probability the-
ory. All other constraints are, just as the belief dis-
tributions, expressions of the decision maker’s beliefs.
This suggests that relaxing some of the user specified
constraints could be just as appropriate as moving the
centroid. We can incorporate this strategy into our
inconsistency measure by adding a new positive slack
variable ξi to each of the soft constraints (cf. (Cortes &
Vapnik 1995)).3 A soft constraint

∑
i aixi ≤ b would

be substituted by
∑
i aixi ≤ b+ ξi, and

∑
i aixi ≥ b by∑

i aixi ≥ b−ξi. A soft equality constraint
∑
i aixi = b

would be substituted by the two inequality constraints∑
i aixi ≤ b + ξi and

∑
i aixi ≥ b − ξi+1. We can now

choose to minimize

1
2
‖x′p − xp‖2 +C

`p∑
i=1

ξp(i) (2)

which expresses a bias towards small modifications of
the soft constraints, in addition to the bias for small
movements of the centroid already expressed by Equa-
tion 1. The parameter C allows the decision maker to
control the penalty for modifying constraints, a larger C
corresponding to assigning a higher penalty to relaxing
constraints.

Similarly,

1
2
‖x′u − xu‖2 +C

`u∑
i=1

ξu(i) (3)

can be used as inconsistency measure for the value base,
with the vector x′u−xu, as well as the values of the slack

3The soft constraints are here taken to be all constraints
except

∑mi
j=1

pij = 1, but the decision maker could be al-

lowed to specify whether any further constraints should be
hard.

variables ξu(i), functioning as guidance for the decision
maker in trying to lower the inconsistency of the value
base.

Algorithm
Next, an algorithm for numerically realizing the com-
putational procedures given in the previous section, is
provided. In this section, we present the general algo-
rithm for computing generalized expected mean values
given a decision problem involving belief distributions
and linear constraints. The next section demonstrates
how the algorithm also applies to decision problems in-
volving interval values and constraints only, as well as to
classical models using point values. As will be noted,
the algorithm can be much simplified in these latter
cases. The general algorithm consists of the following
steps:

1. Calculate the centroids of the belief distributions.
2. Find vectors, consistent with the constraints, that

minimize the inconsistency measures given in Equa-
tions 2 and 3.

3. Calculate the generalized expected mean value for
each consequence.

The last step is just a straightforward calculation of
〈x′pi , x′ui〉 and will not be discussed below. The first
two steps, however, call for further elaboration.

Calculating Centroids
Calculating the centroids of the belief distributions in-
volves numerical integration. Although there are few
restrictions on the belief distributions, they will typi-
cally be smooth and continuous functions. Thus, if be-
lief distributions are defined locally for only one prob-
ability or utility variable, then any standard algorithm
for numerical integration of single variable functions
can be used (see, e.g., (Davis & Rabinowitz 1984;
Zwillinger 1992)). One of the simplest being the trape-
zoidal rule, which gives high accuracy after only a few
iterations when the integrand is smooth and continu-
ous. For more irregular and only piecewise continuous
belief distributions, more sophisticated methods, such
as integration by parts and adaptive integration are re-
quired (Davis & Rabinowitz 1984).

With belief distributions defined over more than one
variable, methods for integration of multivariate func-
tions are needed (see, e.g., (Davis & Rabinowitz 1984;
Sloan & Joe 1994)), increasing the complexity of the
algorithm substantially. On the other hand, with belief
distributions defined over several variables, there will
usually be fewer explicit constraints.

Minimizing Inconsistency
As was noted above, centroids may be inconsistent with
the stated constraints when the specification of the
decision problem involves local distributions. It may
also be the case that the set of linear constraints lacks
feasible solutions. In such cases, we find the vectors



minimizing the inconsistency measure given in Equa-
tion 2 for the probability base and Equation 3 for
the value base respectively, and use these instead of
the centroids when calculating the generalized mean
values. These vectors are found by solving the con-
vex quadratic programming problems with the incon-
sistency measures as objective functions. Because the
problems are convex, this is relatively easy, and we are
guaranteed to find global minimizers (Fletcher 1987;
Luenberger 1989).

Special Cases
Above, we have presented an algorithm for evaluat-
ing decision problems with belief distributions defined
for the probability and value bases. It should also be
noted that the algorithm can be used to evaluate deci-
sion models with interval values but no belief distribu-
tions, and classical models with probabilities and utili-
ties given as point values.

Interval Values
Danielson and Ekenberg (1998) investigates different
methods for evaluating decision models with interval
probabilities and utilities. Here, we suggest an alterna-
tive approach. The algorithm presented in the previous
section requires belief distributions in order to compute
the vectors used for evaluating the generalized expected
mean values. Now, we have no belief distributions, so
how can we use the same algorithm? Simply by as-
suming a symmetric belief distribution for the intervals.
The coordinates of the centroids then become the mid-
points of the intervals. The complexity of the algorithm
is reduced since the integral computations become triv-
ial.

Point Values
Considering point values, we have the constraints∑mi
j=1 pij = 1, so we need to consider inconsistency in

the probability assessments only. If we interpret the
point values as being the only points with positive be-
lief, we can use the same approach as in our original
algorithm. The computational complexity, however, is
substantially reduced. The vector x′pi is now given by
the equation

x′pi = xpi −
〈n, (xpi − v)〉
‖n‖2 n,

where v is an arbitrary vector on the hyperplane defined
by
∑mi
j=1 pij = 1, and n is a normal of that hyperplane.

Since n = k1 for some k 6= 0 where 1 is a vector of size
mi with all elements equal to 1, we get:

−〈n, (xpi − v)〉
‖n‖2 n =

〈k1, (v− xpi)〉
‖k1‖2 k1

=
〈1, (v− xpi)〉

mi
1

=

∑mi
j=1(vj − xpi(j))

mi
1

=

∑mi
j=1 vj −

∑mi
j=1 xpi(j)

mi
1

=
1−∑mi

j=1 xpi(j)

mi
1.

From this follows that the jth element of x′pi simply is

x′pi(j) = xpi(j) +
1−∑mi

j=1 xpi(j)

mi
.

Discussion
We have presented an algorithm that implements the
computational procedures for evaluating imprecise deci-
sion problems suggested by Ekenberg and Thorbiörnson
(1997; 1998). There are, however, many important is-
sues that are not addressed in this paper. One is how
decision makers can benefit from the increased express-
ibility. Developing an intuitive semantics for belief dis-
tributions, similar to that already existing for interval
probabilities and utilities, is essential. Without it, the
decision maker would have little guidance for what con-
stitutes a good belief distribution, which in particular
would make it hard for human decision makers to fully
make use of the added expressiveness. For artificial de-
cision makers, procedures for learning and updating be-
lief distributions from observations must be developed.
For example, ignorance can very naturally be repre-
sented by a uniformly distributed belief for the whole
domain of a variable, but once evidence for that vari-
able becomes available, it is not as obvious how this
should be incorporated into the model.

Furthermore, when evaluating the decision problem,
probabilities and utilities are reduced to single points
by means of integration. This makes the computations
less complex, but much of the information in the prob-
lem specification is lost. A topic for future research is
to develop algorithms for sensitivity analysis. Such an
algorithm could try to identify assignments to the prob-
ability and utility variables in which the decision maker
has a high belief, but that would result in a different
alternative being the one with highest expected utility.

Finally, our bias towards vectors close to the cen-
troids of the belief distributions does not necessarily
give us the vectors in which the decision maker has the
highest belief. Alternatively, we could choose an incon-
sistency measure expressing a bias towards vectors with
a high belief. One such measure for the probability base
could be

n∑
i=1

mi∑
j=1

(fpi(j)(xpi(j)) − fpi(j)(x′pi(j))).

This will, however, make the efficiency of the algorithm
dependent on the decision maker’s choices of belief dis-
tributions. Unless these are all linear functions (which
in most cases will not be the case), finding x′pi(j) and
x′ui(j) will amount to solving a nonlinear programming
problem, which in the general case is hard (see, e.g.,



(Luenberger 1989)). Finding a good bias by evaluat-
ing the current inconsistency measure, and alternative
measures, is an important task for future research.
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