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Abstract

In the problem area of evaluating complex software
systems, there are two distinguished areas of research,
development, and application identified by the two
busswords valida*ion and verification, respectively.

From the perspective adopted by the authors
(cf. (O’Keefe & O’Leary 1993), e.g.), verification 
usually more formally based and, thus, can be sup-
ported by formal reasoning tools like theorem provers,
for instance.
The scope of verification approaches is limited by the
difllculty of finding a sufficiently complete formalisa-
tion to built upon. In p~amount realistic problem
domains, validation seems to be more appropriate, al-
though it is less stringent in character and, therefore,
validation results are often less definite.

The aim of this paper is to exemplify a validation ap-
proach based on a clear and thoroughly formal the-
ory. In this way, validation and verification should be
brought closer to each other, for the benefit of a con-
cexted action towards dependable software systems.

To allow for precise and sufficiently ciear results, the
authors have selected the application domain of al-
goritluns and systems for learning formal languages.
By means of the validation toolkit TIC, some series
of validation experiments have been performed. The
results are presented for the sake of illustrating the
underlying formal concepts in use.

Comparing the validity of one learning approach to the
invalidity of another one can be seen as an interesting
result in its own right.

Motivation

The increasing power of computer systems bears abun-
dant evidence for the need of methodologies and
tools for systems evaluation. Legal formalities like

* volkerd@informatik.uni-leipsig.de
t grieser @informatik.tu-darmstadt.de
jantke@d~i.de

| range @informatik.uni-leipsig.de
Copyright (~)2000, American Association for Artificial In-
telligence (www.uai.org). All rights reserved.

the German Digital Signature Act (Signaturgesetz 
SigG) make the high expectations of dependability of
IT systems explicit (cf. (IuKDG 1997)). The European
Information Technology Security Evaluation Criteria
(ITSEC 1991) and the Common Criteria for Informa-
tion Technology Security Evaluation (CC 1998) specify
the key requirements for meeting a large variety of se-
curity properties.

On high evaluation levels like E4 of ITSEC or EAL5
of CC, for instance, one needs to have formal models
and one has to present certain reasoning steps semi-
formally, at least. Verification comes into play.

In case suflleiently complete formal models and for-
mal reasoning procedures are not at hand, one still
wants to find out whether or not a given system is
likely to meet the user expectations or the necessities
of the application domain, accordingly. Validation is
the term to denote the area dealing with these prob-
lems slightly more informally than verification does.

There axe several ways in which verification and val-
idation might come closer. One way is to attack prob-
lems together possibly dovetailing verification and val-
idation activities, another one is to express the essen-
rials of one approach in terms of the other.

The present paper does contribute to the latter en-
deavour. The authors have developed rather formal
concepts of learning systems validation (cf. (Grieser,
Jantke, & Lange 1997)), thus bringing validation
closer to the formalization standards of verification ap-
proaches. In the present publication, it is proved that
these formal concepts work in practice. Applied to dif-
ferent algorithms resp. systems developed for formal
language learning, these concepts allow for discrimi-
nating valid systems from those being invalid. Valida-
tion meets verification.

The Application Domain

The leaxning algorithms resp. systems being subject to
validation are supposed to learn formal languages.

A minimal collection of necessary formalisms will be
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introduced almost informally. (Gold 1967) is the sem-
inal paper underlying our learning paradigm invoked
and (Angluin & Smith 1983) is an excellent survey 
this respect.

The target class of formal languages to be learnt
is specified via some concept of acceptors: contain-
ment decision lists. The learning theoretic investiga-
tion in (Sakakibara & Siromoney 1992) has drawn our
attention to this quite simple type of decision lists. In-
formally speaking, a containment decision list (CDL,
for short) is a finite sequence of labelled words (wi, dl)
(i = 1,..., n), where the labels d~ are either 0 or 1 and
the final word w,~ equals the empty word e. Such a
list can be easily understood as a classifier for words
over the underlying alphabet E as follows. Any word
w fed into a CDL is checked at node (tot, dl) first. 
any check reveals that wi is a subword of w, the input
word is classified as determined by d/. For instance,
w is accepted exactly if d~ : 1. If otherwise w does
not contain wi, the input word w is passed to check it
against wi+l. By definition, w,, which equals ̄  is a sub-
word of w, and thus the process described terminates
in a well-defined manner.

The CDL L : [(aab, 11, (aa, 01, (e, 1)] is an illustra-
tive example. For simplicity, we choose the alphabet
E : {a, b}. Roughly speaking, the language accepted
by L is the set of all words containing nab or not con-
taining a square of a. The complement consists of
words containing aa, but not containing nab. Subse-
quently, we identify a CDL with the language which
it accepts. What is actually meant will become clear
from the context.

There are many ways to present information about
formal languages to be learnt. The basic approaches
are defined via the key concepts test and informant,
respectively. A text is just any sequence of words ex-
hausting the target language. An informant is any
sequence of words labened alternatively either by 1
or O such that all the words labelled by 1 form a text
whereas the remaining words labelled by 0 form a text
of the complement of the target language.

Already the fundamental results in (Gold 1967) im-
ply that arbitrary containment decision lists are known
to be learnable from informant. In other words, the
knowledge contained in any CDL can potentially be ac-
quired by processing only finitely many labelled words
of the language accepted by it. More formally speak-
ing, there is a learning algorithm that, when succes-
sively fed any informant for any CDL, outputs a se-
quence of hypotheses which stabilizes on a correct hy-
pothesis for the target CDL.

In (Aha, Kibler, & Albert 1991), there has been
presented some simple and alluring case-based learn-

ing algorithm named IB2. It is designed for acquiring
knowledge like CDLs from finitely many cases. IB2
is selectively collecting cases which are subsequently
presented. For our purpose, we have to extend IB2
to IB2~ which allows for an adaptation of the simi-
larity concepts in use. (There is definitely no hope
for IB2 to learn any non-trivial CDL.) In (Sakakibara
& Siromoney 1992), a particular learning algorithm,
subsequently called FIND, has been proposed. FIND
learns CDLs even in the presence of noise. The learn-
ing algorithms IB2~ and FIND are totally defined, i.e.
they respond to all possible input data.

In the present paper, we validate these learning al-
gorithms, thereby adopting the theoretical concepts of
learning systems validation developed in (Grieser, Jan-
tke, & Lange 1997I. The series of supporting experi-
ments have been performed using the validation toolkit
TIC (cf. (Burghardt, D6tsch, & Frind 1996)) which 
especially designed and implemented for evaluation of
several inductive learning algorithms.

Validation Scenarios

The focus of the present paper is on interactive ap-
proaches to the validation of complex interactive sys-
tems as exemplified in (Abel, Knauf, & Gonzalez 1996;
Abel & Gonzalez 1997; Knanf et al. 19971, and oth-
ers. Inspired by (Taring 1950), KNAUF is advocat-
ing in (Abel, Knauf, & Gonsalez 1996) and in his
subsequent publications a type of approaches to sys-
tems validation by systematic interrogation. For spe-
cific classes of target systems, KNAUF’S perspective has
been adopted and adapted in (Arnold & Jantke 1997;
Grieser~ Jantke, & Lange 1998a; Jantke 19971, for in-
stance.

Based on these ideas, in (Grieser, Jantke, & Lange
1998b) the authors developed and investigated a for-
mal scenario for validating inductive learning systems.
Validation by experimental interrogation is performed
through the essential stages of test case generation, ez-
perimentation, evaluation, and assessment. Test cases
are generated in dependence on some intended target
behaviour and, possibly, with respect to peculiarities
of the system under validation. Interactive validation
is performed by feeding test data into the system and
- hopefully - receiving system’s response. The results
of such an experimentation are subject to evaluation.
The ultimate validity assessment is synthesized upon
the totality of evaluation outcomes. In the following,
we adapt this scenario for the validation of systems
that are designed to learn containment decision lists.

In ease a given system clearly employs some basic
principle, we even face the validation of learning prin-
ciples (cf. (Beick & Jantke 1999)).
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A validation problem for an inductive learning system
of the type under consideration is given as a triple of
* a set U of containment decision lists,
¯ some learning algorithm S, and
¯ a criterion of success.
The precise question is whether S is able to leaxn all
CDLs from U with respect to the considered criterion
of Success.

In the validation community, there is an ongoing de-
bate about the necessity of system knowledge. The
question is to what extent black box validation with-
out processing any extra system knowledge may be suc-
cessful. In paxtieulax, this is very unlikely for learning
systems validation (cf. (Jantke & Herrmann 1999)).
Fortunately, in our study, we can always assume that
the learning algorithms under inspection meet some
paxticulaxly useful properties.

Test Data Generation

Test case generation is a quite mature research and de-
velopment area in its own right. There is a large variety
of approaches ranging from those with a mostly math-
ematical background (cf. (Auzi~i et al. 1991), e.g.) 
those which are exclusively founded in the humanities
(cf. (Schand 1993; Stager 1993), e.g.). The key ques-
tions are what characterizes suitable test cases, how
do they relate to systems under inspection, and how
to derive them.

In the present application domain, the most general
approach is the following: Let L be a CDL in U. Test
data for this CDL are pairs of a word and the classi-
fication which L assigns to it. TD(L) -- {(w, c) w E
E*, c = L(w)} is the set of all test data for L. Test
cases consist of a certain CDL L and a set of test data
for it. TC : {(L,E} I L E [7, E C_ TD(L)} is the 
of all potential test cases for CDLs in U.

In practice, we have to deal with two problems.
First, the set U which the learning algorithm is sup-
posed to learn may be infinite. However, one can
test the learning algorithm’s ability for finitely many
CDLs, only. An initial approach is to select them
rather randomly. Another idea is to select "typi-
cal" CDLs of increasing complexity. In our experi-
ments, we select 2 typical CDLs by hand. Second,
the set of test data for each individual CDL is in-
finite. But clearly, one can probe the learning al-
gorithms on a finite fraction of this data set, only.
To be fair, it should be guaranteed that the finite
fraction selected is, at least in principle, sufficiently
laxge to leaxn the target CDL from it. In our spe-
cial case, bounds for the size of such sufficiently large
test data sets axe known (cf. (D~tsch ~z Jantke 1996;
Sakakibaxa ~z Siromoney 1992)). In our experiments,

we deal with test data sets of size 300 to 8000. This is
clearly above the theoretical bounds.

Once test data have been generated, they can be
taken as a basis for experimentation.

Experimentation

Experimentation is a key activity in scientific discov-
ery, in general (el. (Popper 1959)). Even if the goal 
investigations is as narrow as the validity of axtifacts of
a certain type, systematic experimentation is deemed
essential (el. (Gonsales 1997), e.g.).

Scenarios of experimentation determine how to in-
teract with a certain target system. The learning al-
gorithms which axe subject to validation process finite
lists of test data instead of finite sets of it. Moreover,
one has to be aware that the output of the algorithms
may depend on the order as well as the frequency in
which the test data occur. This complicates the exper-
imentation slightly. On the other hand, we exclusively
deal with learning algorithms that generate an output
on every possible input which, in contrast to (Grieser,
:Iantke, & Lange 1998b), yields some simplification.

The experimentation has a paxticulax parameter,
namely a procedure which, given any test case
IL, E) E TC and two intensity parameter n and l, de-
termines (maybe even non-determinlstically) a finite
collection of n lists of length l on which the target
learning algorithm is tested. As a rule, each of these
lists contains only test data from E, possibly with rep-
etitions. In our experiments, these lists are created by
drawing randomly and independently 2000 test data
from E. Moreover, we choose the intensity paxameters
n = 100 and l = 2000. Now, let j ~ 2000 and let Hj
be the multi-set of the hypotheses which the learning
algorithm outputs after processing all initial segments
of length j. The triple (L, E, Hi) is called a protocol.

Evaluation

Protocols about individual experiments are subject to
the expert’s evaluation marked by a number between
0 and 1, expressing the opinion whether or not the ex-
periment witnesses the learning algorithm’s ability to
learn the taxget CDL. This realizes a (partial) map-
ping Eval which is said to be an expert’s evaluation
function. Then, a tuple IP, b) consisting of a protocol
P = (L, E, H) and the corresponding expert’s evalua-
tion b : Eval(L, E, H) is said to be a report.

Naturally, the question arose whether or not one
may invoke computer programs to evaluate the pro-
tocols which the experimentation yields. As the re-
suits in (Grieser, 3antke, gz Lange 1998b) impressively
show, the evaluation of leaxning algorithms resp. sys-
tems require a degree of expertise which, in general,
computer programs cannot achieve. Consequently, hu-
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man experts have usually to be involved to rate the
quality of the protocols. Fortunately, the learning do-
main and the learning algorithms under consideration
posses convenient properties which allow us to imple-
ment a sufficiently meaningful evaluation. In fact, this
is a corollary of Proposition 29 in (Grieser, Jantke, 
Lange 1998b). Since the language which a CDL defines
is a regular one, it can uniformly be decided whether
or not the actual hypothesis of the learning algorithm
IB2e resp. FIND describes the target CDL correctly.

However, to get deeper insights, in our study we use
additionally the following evaluation function: For a
fixed length m and all h E H, let q(h) be the ratio of
all words in E* of length less or equal m that h cor-
rectly classifies. Then, Eval(L, E, H) is the fraction of

~’~hEs q(h) and the cardinality of H. In our experi-
ments, we set m : 12.

The evaluated protocols establish elementary build-
ing blocks for validity assessment.

Assessment

For complex systems, it is a huge step from evaluating
local features to an overall quality assessment. Some
authors suggest numerical approaches towards combin-
ing sets or sequences of reports (cf. (Knauf & Gonzalez
1997), e.g.), which result from interactive experimen-
tation, into monolithic validity assessments. Others
(like (Terano 1994), e.g.) prefer a structural combina-
tion which results in complex charts representing the
knowledge acquired.

Following (Griesez, Jantke, & Lange 1998b), finite
sets of reports form a validation statement; a sequence
of such statements is called a validation dialogue. Sys-
tems that are valid with respect to the criterion of suc-
cess result in successful validation dialogues, i.e., infor-
mally speaking, dialogues in which experiments on the
basis of larger and larger test data sets are reported
and in which the expert’s evaluation Eval converges to
the value 1.

As discussed in Section 3.1, our experiments provide
only initial segments of such potentially infinite val-
idation dialogues. However, the learning algorithms
under inspection meet a particularly useful property
which can be exploited to derive validity statements
even from a small number of reports. Both algorithms
do not change their respective hypothesis any further
in case the current one correctly classifies the given
data. This property, called conservativeness, allows to
extrapolate the algorithm’s behaviour. If it has been
shown that a conservative learning algorithm once out-
puts a correct hypothesis for the target CDL, then it
is guaranteed that the algorithm learns this particular
CDL as required.

Validation Results

In our case study, we perform a couple of experi-
ments in order to validate the learning algorithms IB2’
and FIND. In particular, we probe these learning al-
gorithms in that we analyze their performance when
learning different CDLs.

For our experiments with the validation toolkit TIC
(cf. (DStsch & Jantke 2000)), we select two test 
of increasing complexity, namely

Lz = [(abbb, 0), (abb, 1), (ab, 0), (baaa, 1),
o), (ha, 1), and

L2 ---- [(bcb, 1), (aab, 0), (aeac, 0), (ec, 1),
(ab, o), (aa, 0), (a, 1), (b, 1), 

The CDL Lz defines an acceptoz for words over the
terminal alphabet Ez -- {a, b}, whereas the CDL L~ is
used as a classifier for words over the larger terminal
alphabet E2 = {a, b, c}.

For probing the learning algorithms in ease that the
CDL L1 should be learnt, we fix a test data set E1
which consists of all test data of the form (w, Ll(w)),
where w is a word over St of length less or equal 7.
For our experiments, we select randomly 100 fists of
length 2000 out of the elements in E1 and create proto-
cols which reflect the algorithms’ behaviour when pro-
cessing, for every of these 100 lists, initial segments
of length 10, 50, 100, 500, 1000, and 2000, respec-
tively. Figure 1 displays the essentials of the resulting
validation dialogue, i.e. it shows how these protocols
are rated by the evaluation specified in Subsection 3.3.
The variance is indicated by vertical intervals.

CDL LI

,,o ] .................................................................................................................... ....................... ..............
o,9 -I
0.8 +

0,7 -I

~o,6-1

O,3 I

0,:2 I

0,1 I
0,0 1

10 50 100 500 1000 2000
length

L-~" -FIND = IB2’J

Figure 1

Additionally, Figure 2 displays the essentials of the
resulting validation dialogue for the case that the
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CDL L2 defines the taxget of the learning task. In
contrast, now the 100 randomly selected lists of length
2000 axe formed fxom the elements in a test data set E=
which consists of all test data (to, L=(w)), where to 
a word over E2 of length less or equal 8.

CDL 1.2

1,0

0.9

0,8

0.7

~.0.6

0.5 i

0,4

11.3

11.2

0,1

17,0
10 50 1 O0 500 1000 2000

length

I" "+"-F,ND ~,e2’I

Figure 2

Looking at the curves depicted, one is tempted to
conjecture that the leaxning algorithm FIND is doing
a pretty good job, i.e. it learns the target CDLs. And
indeed, a closer analysis of the corresponding proto-
cols proves that, after processing the complete lists of
length 2000, FIND outputs hypotheses that are equiva-
lent to the target CDL L1 and L2, respectively. Hence,
since FIND is a conservative learning algorithm, it is
proved that FIND learns both CDLs on every infor-
mant that has one of the processed lists of length 2000
as initial segment.

On the other hand, the curves depicted for the learn-
ing algorithm IB2~ show that the accuracy of its hy-
potheses is remaxksbly below 100%. Again, as a closer
look in the protocols exhibits, IB2~ never outputs a
correct hypothesis. Hence, IB2~ performs at least not
as good as FIND. Moreover, taking into account that
IB2~ is unable to learn in situations in which FIND
performs well, one may conjecture that IB2~ is rather
invalid, while FIND seems to be valid.

Interestingly, the validation statements derived
nicely fit with insights that a theoretical analysis of
the learning algorithms IB2~ and FIND discovered.
(Sakakibaxa & Siromoney 1992) formally proved that
FIND leaxns every CDL on every informant for it,
whereas (DStsch & Jantke 1996) showed that there are
CDLs and informants for them such that IB2~ is unable
to learn these CDLs on the corresponding informants.

Conclusions

In dependence on the degree of precision and complete-
ness of the knowledge available, the assessment of an
IT system’s quality can be based on more or less formal
methods and tools. A high degree of precision and tool
support is desirable and, sometimes, even required.

The area where systems’ behaviour is evaluated
against informal requirements is named validation.

In previous publications, the authors have developed
a formal framework of validation concepts. These con-
cepts are applied. They are implemented using the val-
idation toolkit TIC. Validity assessment is based on a
certain visualization of sequences of validation reports.

The concepts have successfully been used for prov-
ing a learning system’s validity as well as for clearly
demonstrating a learning system’s invalidity.

Dovetailing the validation scenario with knowledge
about system properties has lead to definite validation
results. The authors are convinced that the future lies
in a sophisticated integration of validation and verifi-
cation.
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