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Abstract

Quite often, heuristics and common sense suggest
directions for improving well-known learning algo-
rithms. However it seems not an easy task to verify
that the modifications are indeed helpful.

This is made more complicated through various addi-
tional influences inherent in different application do-
mains. In order to obtain a faithful impression of phe-
nomena that are intrinsic to the algorithms, the role
of specific domains should be minimized.

Our validation toolkit TIC allows to explore the be-
haviour of various algorithms for learning formal lan-
guages. This is a well-examined and standardized ap-
plication domain.

TIC is operated by interactive as well as automatic
control.

Motivation and Introduction

Today, a lot of different learning approaches and algo-
rithms do exist. There are "classical" as well as "brand
new" approaches, and all of them come in many ver-
sions and refinements. On the one hand this indicates
a desirable improvement of methods, but on the other
hand it makes their relative strengths and weaknesses
more and more difficult to compare. This also hinders
the transfer of results and ideas from one approach to
another.

Quite often, heuristics and common sense suggest di-
rections for improving well-known learning algorithms.
However it seems not an easy task to verify that the
modifications are indeed helpful.

In TIC two prototypical types of learning algorithms
were implemented: inductive algorithms and case-
based algorithms. For introductions to inductive learn-
ing, see (Angluin & Smith 1983) and (Jantke 1989); 

* volkerd~informatik.uni-leipzig.de
*~antke~dfki.de

Copyright (~2000, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

an overview of case-based reasoning, see (Riesbeck 
Schank 1989) and (Kolodner 1993).

We decided to restrict our attention to the area of
learning formal languages (Hopcroft & Ullman 1979),
for three, rather independent, reasons: (1) In prac-
tice it is difficult to characterize and compare differ-
ent application domains. In addition, such domains
always have characteristic features that dominate the
specific properties of the useable learning algorithms.
The influence of specific domains should be minimized
in the interest of the study of fundamental phenom-
ena. (2) Formal languages are widely used to represent
knowledge in computer science. So the concept is gen-
eral enough to supply practically interpretable results.
(3) Formal languages, in particular in their connection
with acceptor and generator concepts, are theoretically
well examined. Thus a rich reservoir of results is avail-
able, into which the results of validation and evalua-
tion of investigated approaches and algorithms can be
embedded and discussed.

(Gold 1967) is the seminal paper underlying our
learning paradigm. The main task in learning is to
learn from incomplete information. This incomplete-
ness approximates practical problems.

There are several ways to present information about
formal languages to be learnt. The basic approaches
are defined via the concepts text and informant. A text
is just any sequence of words exhausting the target
language L. An informant for L is any sequence of
words labelled by 1 or 0 such that all the words labelled
by 1 form a text for L whereas the words labelled by
0 form a text of the complement of L.

Learning algorithms have to express their hypothe-
ses in some particular form. Case-based learners gen-
erate bases of selected cases and tune similarity con-
cepts; cf. (Jantke & Lange 1995). Because a similar-
ity measure can be refined during the learning pro-
cess, each case-based hypothesis consists of the case
base and the similarity measure. A small number of
case-based learning algorithms (Aha, Kibler, & Albert
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1991) have been published that reflect the standard
case-based reasoning paradigm.

Inductive learning algorithms construct explicit gen-
eralizations from examples (processed information).
Such a hypothesis could be a regular expression, pat-
tern, automaton, etc.

In one learning step the learning algorithm outputs
one hypothesis. In the next learning step, if further in-
formation is offered, another (refined) hypothesis pos-
sibly is output. Thus, during the complete learning
process, a sequence of hypotheses is produced.

TIC Overview
TIC is a tool for validating algorithms that are sup-
posed to learn formal languages. We did implement 21
algorithms: 6 basic algorithms and several versions of
it. One can examine one algorithm or compare some
algorithms in the batch processor. Typical questions
addressed are as follows:

¯ Do the algorithms show the expected behaviour (e.g.
consistence)?

¯ Do the algorithms stabilize on a correct hypothesis
on increasing information provided?

¯ How fast do the hypothesis sequences stabilize?

¯ Do algorithms need a repetition or a special ordering
of the information provided?

¯ How does the size of the hypotheses depend on the
amount of information processed?

Validation may be seen as the process of inspecting a
given learning algorithm for answering questions like
these.
The following algorithms have been implemented:

¯ the basic algorithm for learning finite, deterministic
automata described by Trakhtenbrot and Barzdin
(Trakhtenbrot & Barzdin 1973) and 9 variants of it,

¯ IB1, IB2, IB3 by David Aha (Aha, Kibler, & Albert
1991) for case-based learning, slightly adapted for
learning formal languages, and three different types
of similarity measures for each IB-Alg. (cf. (DStsch
& Jantke 1996)),

¯ the algorithm FIND developed by Sakakibara and
Siromoney (Sakakibara & Siromoney 1992) for in-
ductive learning Containment Decision Lists (CDL
for short),

¯ the algorithm by D. Angluin (Angluin 1980) for
learning regular patterns.

TIC is providing a framework for interactively inspect-
ing these algorithms including visualization and docu-
mentation of the results.

Validation Scenarios
With TIC we focus on interactive approaches to the
validation of learning algorithms. Based on the ideas in
(Grieser, Jantke, & Lange 1998) a validation scenario
consists of test case generation, experimentation, eval-
uation, and assessment. Test case generation depends
on some intended target behaviour, possibly with re-
spect to peculiarities of the system under validation.
Interactive validation is performed by feeding test data
into the system and receiving system’s response. The
results of such an experimentation are subject to evalu-
ation. The question is whether a learning algorithm is
able to learn all target objects with respect to the con-
sidered criterion of success. Thus, a validation prob-
lem for a learning algorithm is a triple of a set U of
representers (e.g. automata or CDLs), some learning
algorithm S and a criterion of success.

Test Data Generation

After the selection of one algorithm for evaluation it
is necessary to fix the used alphabet. In TIC all up-
per case and lower case characters and the digits 0
to 9 are allowed. One has to select U, the set of
representers1 which the learning algorithm is supposed
to learn. Maybe U is infinite, but one can test finitely
many representers only. Here the idea is to select rep-
resenters that are typical for U, and test only these.
Another strategy is implemented for finite automata
only. One can generate automata randomly and use
these for validating the learning algorithm.

A test case consists of one specific element of U (one
representer) and a subset of all possible information
(test data) for it. As test data, the use of informant 
default, but the user also can restrict it for using text
only. The definition of test data is a two-phase process.
In the first phase the user defines a list of words (a
subset of all words over the fixed alphabet, duplicates
are allowed), in the second phase TIC classifies each
word via the selected representer.

To define the list of words, we implemented a com-
fortable editor in TIC. It generates words over the fixed
alphabet. All the words will be classified (0 or 1)
during the learning process before feeding them into
the learning algorithm. This guarantees the consis-
tency between the selected representer and the test
data. The editor for the learning information makes
available the following functionality: Modify the list

1 Possible are regular patterns, containment decision lists
or finite deterministic automata. There exist editors for
defining representers of these three types. The functionali-
ties save, copy and load are available for each type of repre-
senters; minimize, generate randomly and test for equality
only for some.
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by hand (insert, add, delete), Generate n words from
word length i to length j randomly, Generate all words
between word length i and j, Load and save a list,
Append a complete list to the current list, Remove
duplicates in the current list, Order the current list
(randomly, alphabetically, by word length, ascend-
ing/descending). With this features the user can make
sure that the list of test data is appropriate to show the
behaviour of the learning algorithm the user wants to
validate. For example: to validate that the algorithm
learns correctly without duplicates in the learning in-
formation, one can remove all duplicates in the test
data. To validate that the algorithm learns correctly
from order-independent information, one can feed in
randomly ordered test data.

Experimentation

Up to now we worked with learning algorithms that
generate an output on every possible input. Before
one can start the experimentation, one has to define
the special parameter stepwise for the learning pro-
cess. This parameter specifies how TIC divides the list
of test data in initial segments of a certain length. Each
segment is processed by the learning algorithm. So, we
get a sequence of hypotheses over increasing informa-
tion during the learning process. Possible options are
"step by step", "by word length" or "self defined" (fig.
1). "Step by step" means the learning algorithm sees

Figure 1: TIC after learning and testing

the first example (word and its classification) and pro-
duces a hypothesis in the first learning step. In the
next learning step, the algorithm sees the first two ex-
amples and produces a hypothesis. In the third learn-
ing step the algorithm sees the first three examples,
and so on. If the stepwise is "by word length", in the
first learning step the algorithm works on all examples

with the shortest word length in the given test data,
and produces a hypothesis. In the second step, the al-
gorithm works on all examples with the shortest and
the next length. And so on, up to the maximal word
length in the information provided. Also it is possible
to start with the maximal word length and go down to
the shortest length. If one choose "self defined", one
can define how much examples the algorithm works on
in each learning step (named "blocks" in fig. 1); for
example, in the first step the first three examples, in
the next step the first 50 examples, in the next step
the first 175 examples. There is only one condition:
the number of examples must increase in each step.

During an experiment, TIC produces a sequence of
hypotheses and the list of numbers of those steps, at
which the hypotheses were changed. If the stabilization
on a correct hypothesis is decidable, that stabilization
point in the sequence of hypotheses is shown.

A test scenario is defined by any test case and a
stepwise. One can save the complete scenario with all
settings2 and load it for continuing later.

Evaluation

Each test case and its appropriate hypothesis is subject
for evaluation. One can check whether the hypothesis
is correct (correctness is the criterion of success). If the
target language is regular, it can be decided whether or
not the actual hypothesis of the learning algorithm de-
scribes the target language correctly. For regular pat-
terns and finite automata such a test is implemented,
and TIC uses it automatically. For CDLs and case-
based hypotheses we go another way. We define a test
set T of words over the used alphabet. Now the toolkit
classifies correctly each w E T via the given represen-
ter and compares these classification via the selected
hypothesis. When any misclassification occurs, the ac-
tual hypothesis can not be correct. In the other case
(no error) one should check the hypothesis by hand 
use another test set. For most of our experiments, a
test set T of more than 20 000 words was sufficient to
check the incorrectness of hypotheses. The misclassi-
fled words can be shown and saved in a separate list
for further research.

If hypotheses are not correct, it is useful to know the
ratio of the quality between hypotheses. Therefore TIC
uses a given test set T and counts the number of mis-
classifications w.r.t, the target language. The result is
shown in the main window (fig. 1) separate for words
of the target language (1 classification via the given
representer), words of the complement of the target

~used algorithm, similarity measure for case-based
learning and, when finished the learning process, the list
of hypotheses and the stabilization point
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language (0 classification) and all words of T. To eval-
uate the behavior of the used learning algorithm or the
strategy of the algorithm, TIC can generate a picture
of these error rates for the whole sequence of hypothe-
ses (fig. 2 and 3). It is possible to make visible one, two
or all error rates. Each test case and its appropriate

Figure 2: Error rate for correct learning

hypothesis is evaluated (marked) by a number between
0 and 1, expressing the opinion whether or not the ex-
periment witnesses the learning algorithm’s ability to
learn the target language.

In case the user is validating a learning algorithm for
consistency, it is enough, to test the hypotheses with
the same information that the algorithm learned from.

TIC also shows the size of hypotheses. So the user
can evaluate the relation between size of hypotheses
and the increasing information during the learning pro-
cess. One can open a separate window for each hy-
pothesis for a deeper analysis. Also one can save each
hypothesis to use it as a representer later.

Assessment

When systems are valid with respect to the criterion of
success, experiments on the basis of larger and larger
test data sets are evaluated (marked by a number be-
tween 0 and 1) and the evaluation converges to the
value 1.

As said above, the experiments provide only initial
segments of potentially infinite experiments. But the
implemented learning algorithms have a useful prop-
erty, which can be exploited to derive validity state-
ments even from a small number of experiments. The
algorithms do not change their actual hypothesis any
further in case the current one correctly classifies the
given data. This is called conservativeness and allows
to extrapolate the algorithm’s behaviour. Once a con-
servative learning algorithm outputs a correct hypoth-
esis for the target language, it is guaranteed that the
algorithm learns this particular language.

........................................................... !~[ ..

¯ : ..., ........ ..

....................................................... ,,,’, , ,’n" . , r," ,. ¯ ,’n,

Figure 3: Not learning on randomly
arranged good examples

Figure 3 is showing the rates of misclassifications
during one run of IB2’ on a randomly ordered good ex-
ample list (cf. section An Application Example). It is
plain to see how the algorithm is "changing its mind".
If the user (the domain expert) had arranged the learn-
ing information in a particular order, IB2’ would learn
correctly.

In the present setting, validation means to run the
algorithm under inspection on certain input data which
are either randomly chosen or systematically synthe-
sized to represented prototypical learning situations.
The expected learning result is known to the valida-
tor in advance. Valid systems are expected to clearly
demonstrate their success in learning on all input data
fed in.

The behavior displayed in figure 3 above does not
indicate any success of learning. This bears evidence
of the systems invalidity.

Batch processing

For comparing algorithms, batch processing is very
useful. The user gives a set R of representers and a set
D of lists of test data. So we have the set C -- R x D
of test cases. Only one stepwise, a set S of test sets
and a set A of learning algorithms is necessary also.

The batch processor runs R x D learning scenarios
for each algorithm. Furthermore the batch processor
tests correctness and quality (the three error rates; via
the set S of test sets) of each hypothesis. The size of
the hypothesis and the result of the tests are saved in
a report file in ASCII format, ordered by the used test
case and algorithm. One can load the report file into
some tools for statistical analysis or generating trend
curves for size or quality of hypotheses.

If the user want this, also the batch processor saves
all R x D x A scenarios in separate scenario files. So
one can load each test-scenario and continue or refine
the evaluation in the toolkit TIC later.
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An application example

Our approach uses the paradigma of case-based learn-
ing which can be expressed briefly as follows: Given
any CBR system, apply it. Whenever it works suc-
cessfully, do not change it. Whenever it fails on some
input case, add this experience to the case base. Don’t
change anything else. We will show that this is prac-
tically valid only in the presence of substantial user
guidance.

The target class of formal languages to be learnt is
specified via Containment Decision Lists. The learn-
ing theoretic investigation in (Sakakibara & Siromoney
1992) has drawn our attention to this quite simple type
of decision lists. 3 A CDL is a finite sequence of labelled
words (wi, di) (i = 1,..., n), where the labels di are 
ther 0 or 1. Such a list can be easily understood as an
acceptor for words as follows. Any word w fed into a
CDL is checked at node (wl, dl) first. If any check tells
us that wi is a subword of w, than this word is classi-
fied as determined by di, i.e. w is accepted exactly if
di = 1. If otherwise w does not contain wi, the input
word w is passed to wi+l and so on. By definition, Wn
equals the empty word e, is a subword of any w, and
thus the process described terminates in a well-defined
manner.

The CDL L = [(aab, 1), (aa, O), (6, 1)] is an illus-
trative example. Roughly speaking, the language ac-
cepted by L contains all words containing aab or not
containing a square of a. Words in the complement are
containing aa, but not containing aab.

Within case-based reasoning, case-based learning as
investigated in (Aha, Kibler, & Albert 1991) is a nat-
ural way of designing learning procedures. There are
even normal form results (cf. (Globig et al. 1997))
explaining that all learning procedures of a certain
type may be rewritten as case-based learning proce-
dures. The first task of case-based learning is to col-
lect good cases which will be stored in the case base for
describing knowledge and classifying unknown exam-
pies. Case-based learning algorithms do not construct
explicit generalizations from examples. Their hypothe-
ses consist of case bases together with similarity con-
cepts. Both constituents may be subject to learning,
i.e. the second task of case-based learning might consist
in suitably tuning the similarity measure in use.

Due to (Sakakibara & Siromoney 1992), arbitrary
containment decision lists are known to be learnable.
In other words, the knowledge contained in any CDL L
can potentially be acquired by processing finitely many
cases describing the target language accepted by L.

3All languages accepted by CDLs are regular, but not
all regular languages can be accepted by a CDL.

In (Aha, Kibler, & Albert 1991) there has been pre-
sented a simple algorithm named IB2 for acquiring
knowledge from finitely many cases. IB2 is selectively
collecting cases which are subsequently presented, in
case there is any need to do so. It is exactly following
the paradigmatic idea described above.4

A lot of example CDLs were used for series of ex-
periments. We have performed more than 1 000 000
particular test cases. They exhibit a catastrophic be-
havior of IB2’. It turns out that algorithms like IB2
and IB2’ do essentially depend on user guidance.4

Validation results

For case-based learning languages of CDLs, we first
tried completely unsupervised learning experiments.
Every individual experiment was an attempt to learn
from a sequence of correctly classified cases, but they
failed completely.

From critical inspection of the difficulties, we have
been lead to the concept of good example lists. 5 Those
lists are known to be sufficient for learning. On the
one hand, they are algorithmically well-defined and can
be generated automatically. On the other hand, they
might be difficult to find, if the target phenomenon
is not sufficiently well-understood. Even if everything
needed to build those lists of good examples is known,
it might be an additional problem to arrange this
knowledge appropriately. We performed experiments,
to explore the importance of finding an appropriate
ordering of information presented as a basis for learn-
ing. The results illuminate the sensitivity of case-based
learning to the ordering of information quite well; a ra-
tio of success of 10% or below usually is unacceptable
in realistic applications.

We are convinced that case-based learning of CDLs
is considerably simpler than most problems of knowl-
edge acquisition in "real life". Thus, user guidance for
acquiring knowledge in a case-based manner is practi-
cally at least as important as exhibited in the proto-
typical domain of our present investigations, it is just
inevitable. The toy application domain chosen for the
present work is extremely simple. Intuitively almost
every other application domain of some proper rele-
vance is of an larger complexity. It is quite unlikely
that in those realistic domains very simple algorithmic
ideas should succeed, that fail in our toy domain. This
circumscribes our understanding of a "lower bound"
provided by the present findings.

4For our purpose, we extend IB2 (to IB2’) to allow for
an adaptation of similarity concepts. The reader is directed
to (Jantke & D5tsch 1997a) and (Jantke & D5tsch 1997b)
for more and detailled information.

5Learning from good examples was introduced in
(Freivalds, Kinber, & Wiehagen 1989).

VERIFICATION, VALIDATION, & CERTIFICATION329



Conclusion

TIC is a toolkit aimed at validating the behavior of
various algorithms and to generalize some effects. TIC
is able to produce and to show a sequence of hypotheses
out of given examples. It makes visible correctness and
quality of hypotheses and some more information of
interest. In the system, a few algorithms and variants
of these are implemented.

TIC is a fully object-oriented implementation. So
other algorithms for validation or other strategies for
analysis and evaluation can be plugged in. Also one
can extend the system for learning in other domains,
e.g. learning functions.
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