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Abstract

This paper presents a formal security policy model for Smart-
Cards with digital signature application. This kind of model
is necessary for each evaluation according to Information
Technology Security Evaluation Criteria assurance level E4
(Common Criteria level EAL5) and above. Furthermore, we
argue that such a model is essential for reasoning about the
security of Information Technology components like a spe-
cific IT product or IT system. Without an unambiguous defi-
nition of what security means, it is impossible to say whether
a product really is secure.

Introduction
In 1997 the government of the Federal Republic of Ger-
many established the Information and Communication Ser-
vices Act. It contains the Digital Signature Act [1] as arti-
cle 3. On top of that law the German parliament approved
the Digital Signature Ordinance [2]. The aim of [1] and [2]
is the definition of requirements that enable the equivalence
of manual and digital signatures concerning legal binding,
authenticity and integrity of electronic documents in the fu-
ture. One specific requirement of [2] (cf. § 17) is the evalu-
ation of technical components according to the Information
Technology Security Evaluation Criteria [8]. Especially, the
devices for the generation of cryptographic keys as well as
the facilities for storing and applying the private signature
key require an evaluation according to assurance level E4 of
[8]. A formal model of security policy (FMSP) is needed to
reach this level.

SmartCards are appropriate devices for the generation of
digital signatures. The German standardization organization
(DIN) developed an interface specification for SmartCards
with signature application/function [4]. The aim of this stan-
dard is to guarantee inter-operability. It specifies the inter-
face between a terminal (interface device) and a digital sig-
nature card which is in compliance with the German digital
signature law. This specification takes all the legal regula-
tions into account. It is based on the ISO-Standard 7816 and
defines the data objects within a file structure as well as a
collection of interface commands to be used for the genera-
tion resp. validation of digital signatures.
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The generic formal model of security policy presented
here has been developed within a pre-evaluation project of
SmartCards with signature application. It is based on the
interface specification [4] and defines the technical security
policy in correspondence with the accompanying generic se-
curity target (GST) [9]. The target of evaluation is the em-
bedded software of the SmartCard exclusively. Neither the
hardware nor the card operating system is subject to closer
examination. In the following parts we use the term ‘Sig-
Card’ as an abbreviation for the target of evaluation.

SigCards and Assumed Threats
In our context we look at SmartCards which are ready for
signing. This means that the manufacturing and personal-
ization processes of the SmartCard are completed, i. e. the
integrated circuit of the SmartCard is loaded with the digital
signature application and the data base related to a specific
cardholder. It is assumed that this data base has been pro-
cessed by the personalization authority in a secure way and
that the SmartCard is securely handed over to the legitimate
cardholder.

The digital signature operation is processed in the Sig-
Card. For that process the secret signature key of the card-
holder is used which is stored in a secure manner within the
SigCard. The SigCard is accessed with a SmartCard reader
connected to e. g. a personal computer which is responsible
for transmitting the data to be digitally signed. In the follow-
ing we denote all external devices (card readers, terminals,
. . . ) which might be involved in accessing the SigCard with
the term ‘InterFace Device’ (IFD).

The German signature legislative distinguishes ‘private’
and ‘public’ IFDs. The cardholder is expected to trust his
own private IFD. Here the cardholder himself is responsi-
ble to use an IFD which is compliant with the legislative.
Public IFDs provide commercial services. In this case the
cardholder is not able to control or even know whether the
IFD is compliant with SigG legislative.

The idea of the security policy of the SigCard is that the
cardholder is the only legitimate user. Not any other person
is allowed to use her/his SigCard. The SigCard contains the
cardholder’s secret key for signing. It is regarded as the most
valuable asset. The SigCard must keep this key confidential
at all events. Digital signatures are only produced with the
explicit permission of the cardholder.

From: FLAIRS-00 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved. 



In preparation of the development of the FMSP a threat
analysis has been performed. That analysis didn’t take the
hardware or the operating system of the SmartCard into ac-
count. The examination was restricted to the embedded ap-
plication software and data of the SigCard and revealed the
following threats:

T1 Extraction of the secret signature key from the SigCard
by directly reading the data or by analyzing computational
results.

T2 Using the digital signature application of the SigCard
without having the permission of the cardholder.

T3 Unnoticeable modification of signed data.

T4 Presentation of a forged SigCard to a public IFD without
the public IFD being able to notice that.

T5 Presentation of the SigCard to a forged public IFD with-
out the cardholder being able to notice that.

The specific threats can be summarized as such: The card-
holder’s signature is generated for a piece of data the card-
holder does not want to sign.

Formal Model of Security Policy
This section describes the formal specification defining the
security policy of the SigCard. It formalizes the important
security principles and relates them to the security objec-
tives described in the generic security target [9]. The formal
model was developed using the ‘Verification Support Envi-
ronment’ (VSE) which is a tool supporting formal methods
in the complete software life cycle [7]. It is officially ap-
proved for the definition of formal models as required by [8]
or [3]. Due to the limited amount of space we only can give a
brief sketch of the FMSP in the present paper. The complete
formal specification together with its informal interpretation
and other related documents are available in electronic form
[5].

Design Principles
The interface of the SigCard is modelled by input and out-
put variables. The regular input and output of the SigCard
is modelled by an input variable channelIn and an output
variable channelOut. The values of these variables ab-
stractly represent the incoming resp. outgoing messages to
resp. from the SmartCard.

In order to be able to distinguish between a message that
is sent once and one that is sent several times a gap is
modelled which separates two messages. This is done us-
ing the value noInfo representing the absence of informa-
tion. We expect the input variable channelIn to change
from noInfo to a value different from noInfo and back
again, but never to immediately change between two val-
ues both different from noInfo. The SigCard is modelled
in such a way that this is also valid for the output variable
channelOut.

According to ISO 7816 the communication between the
SmartCard and the terminal is like a question and answer
game. The SmartCard answers to commands received from
the IFD. If the IFD does not see an answer within a well

defined period of time it may try to send the command again
or (after a few trials) reset the card. Commands and answers
are both modelled as elements of type information that will
also be called messages in the following.

Since the card is the slave part in the communication it
is the responsibility of the IFD to react if an expected an-
swer is not returned. Therefore, we need not put any timing
constraints on reactions and answers from the card. It is not
necessary that a command is reacted upon by immediately
producing a corresponding answer. It suffices to require that
if the SigCard reacts to a command, the answer properly re-
flects its internal state.

Nevertheless, as we are concerned with the flow of infor-
mation between the SigCard and its environment we have
to take temporal aspects into account. So the main part of
the specification is formulated in a temporal logic specifica-
tion language [6]. In order to define the states which may
change as time proceeds we need data elements that form
these states as well as static relations and functions on these
elements. This leads to an underlying structure providing
abstract data types necessary for our specification.

The most important abstract data types are subject and
information. Elements of type subject are equipped
with a certain amount of knowledge consisting of an unde-
termined number of elements of type information. Sub-
jects can enrich their knowledge base by learning new infor-
mation. This process doesn’t change the identity of the resp.
subject. The main purpose for introducing these data types is
the definition of the predicate inferablewhich describes
the principal possibility of information extraction. Accord-
ing to the defining axiom inferable(i,k) is valid if
there is at least one subject which knows k after learning
i although it did not knew k before.

The formal specification is divided in two layers. The up-
per layer takes a global viewpoint and describes the SigCard
together with the environment in which it is expected to be
used. It formalizes the security objectives specified in [9] as
well as assumptions about the environment. We call this part
of the specification the ‘security objectives layer’.

The lower layer takes a local viewpoint and describes the
SigCard at an operational level. It defines the security policy
of the SigCard in terms of a formalization of the important
security principles extracted from [9]. We call this part of
the specification the ‘security policy layer’.

The two layers are connected by a satisfies link. It
expresses that the operational behaviour specified in the pol-
icy layer should fulfil the properties formalized in the objec-
tives layer. More generally such a link states that every cor-
rect implementation of an operational specification should
be a model (w. r. t. the semantics of the specification lan-
guage) of the associated requirement specification. In our
case the operational specification corresponds to the policy
layer while the requirement specification corresponds to the
objectives layer.

The satisfies link causes the VSE tool to automati-
cally generate proof obligations. If they can be proved the
satisfies relation is valid. In the present context this means
that we have a formal proof that the security policy meets
the security objectives.



Security Objectives Layer

On the upper layer the SigCard is described according to
the security objectives specified in [9]. We will present here
some of these objectives together with their appearance in
(the objectives layer of) the FMSP. To each security objec-
tive one or more temporal logic formulas are associated.

SO1.1:

[] NOT inferable(channelOut,skCh)

SO1.2:

[] skCh = skCh’

SO2.1:

[] ALL i:
inferable(channelOut,sig(i,skCh))
-> authUser = t

SO2.2:

[] maxFailuresExceeded(channelOutHistory)
-> authUser = f

SO2.3:

[] ALL i:
inferable(channelOut,i)
-> NOT authCh(i)

SO7.1:

[] ALL i:
inferable(channelOut,sig(i,k))
-> command = doSign(i) AND

skCh = k

Figure 1: Excerpt from Security Objectives Layer

The security objective SO1 in [9] reads as follows:

The SigCard ensures the confidentiality and the in-
tegrity of the private signature key of the cardholder
stored in the SigCard.

This security objective counters threat T1. It is modelled
by several formulas (cf. Fig. 1) concerning the state variable
skCh that represents the cardholder’s secret key.

SO1.1 Extracting the cardholder’s secret key is only possi-
ble if there is an output from the card that allows anybody
to infer the signature key. Therefore, the above formula
requires that at any moment the secret key skCh cannot
be inferred from the output of the SigCard. Note, that this
statement requires some assumptions on the input stream.
It can only be valid if we assume that the secret key was
not previously transmitted to the SigCard (e. g. as a piece
of information to be signed).

SO1.2 This statement requires that at any time the value of
the cardholder’s secret key in the present state is equal to
the value of the secret key in the next state. So the secret
key can never change.

The security objective SO2 in [9] reads as follows:

The SigCard shall allow the use of the digital signature
function only to the cardholder.

This security objective counters threat T2. It is modelled
by several formulas (cf. Fig. 1) concerning the state vari-
able authUser that reflects whether the user currently is
authenticated as the cardholder and the state variables repre-
senting the cardholder‘s authentication data.

SO2.1 The application of the signature function is observ-
able if a message appears in the output of the SigCard
in any form that allows the signed piece of information
to be inferred. Therefore, the formal model requires that
authUser must indicate that the user is authenticated
whenever a signed piece of information can be inferred
from the output. Of course, the specification contains a
number of additional formulas which ensure that the vari-
able authUser really reflects the correct authentication
state.

SO2.2 Successive authentication failures will be interpreted
as an attempted unauthorized access by the SigCard and
should disable the signature application. This is formally
modelled by requiring that the user must not be authenti-
cated, i. e. authUser equals f, whenever the maximum
number of successive authentication failures is exceeded.

SO2.3 An important condition for an effective cardholder
authentication is that the relevant information, usually
the PIN, is kept secret. Therefore, we formally re-
quire that every piece of information i inferable from
channelOut is different from the cardholder authenti-
cation data. Again, this statement can only be valid, if the
authentication data was not previously transmitted to the
SigCard.

The security objective SO7.1 in [9] is the principal1 secu-
rity objective for SigCard’s and reads as follows:

The SigCard provides a function to generate a SigG
digital signature for the data presented by the IFD us-
ing the SigG private signature key of the cardholder
stored in the SigCard.

This security objective counters threat T2. It is mod-
elled by a formula (cf. Fig. 1) concerning the state variables
command that represents the command currently processed
by the SigCard and skCh that represents the cardholder’s
secret key.

SO7.1 Whenever a piece of information i signed with key
k can be inferred from the output of the SigCard then it
should have received a request for signing this data and
the signature key used should be cardholder’s secret key.
Note, that it makes no sense to require that every signing
request should eventually be answered with a resp. signa-
ture due to the restrictions imposed by user authentication.

1Within the FMSP we don’t take the second part SO7.2 into ac-
count since it expresses requirements on cryptographic algorithms
that have no impact on the security policy of the SigCard’s appli-
cation software.



There are several additional security objectives specified
in [9]. They are concerned with requirements for public
IFD’s resp. with the reaction to security violations. All of
these security objectives are covered by collections of for-
mulas similar to those described above. We end the presen-
tation of the objectives layer with the remark that it does
not contain any restriction on how the implementation of the
signature application should meet the security objectives.

Security Policy Layer

The specification of the security policy in [9] suggests a de-
composition of the specification into components accord-
ing to the policy. Therefore the policy layer of the FMSP
is a combined temporal logic specification. This means it
consists of components that work in pseudo parallel man-
ner. In every state one of the components is active and can
perform its state transitions while the other components per-
form ‘stuttering’ steps2. Fairness conditions are in force en-
suring that every component will eventually take a step pro-
vided the preconditions of the specification hold. A compo-
nent is said to be enabled if its preconditions hold.

The individual components of the policy layer are de-
scribed in the following paragraphs. The description in-
cludes the most important aspects of the control and data
flow within the policy layer.

Figure 2: Excerpt from Security Policy Layer

Automaton component The component Automaton
is responsible to maintain the current authentication state
(CAS). With the help of the object components it detects
security related events (SRE) and reacts on them by chang-
ing the state accordingly. This state machine defines the im-
portant security principles of the SigCard and is depicted in
Fig. 2. Due to space limitations the illustration only includes
the ’private IFD’ part of the state machine.

2The transactions of a temporal logic specification are arbi-
trarily interleaved with so called stuttering steps which randomly
change state variables that are allowed to do so (e. g. input vari-
ables).

Furthermore the Automaton component performs the
task of a scheduler. Actions which have to wait because they
depend on the results of other components are disabled un-
til the Automaton passes control to the resp. component.
Each time such an action is finished the control is returned
back to the Automaton component which in turn decides
how to proceed.

Object components The state of the formal specification
is distributed to a number of object components, each repre-
senting an object3 as described in [9]. An object contains an
asset which is protected against unprivileged access. Among
these values are
� the secret key for producing digital signatures,

� the cardholder authentication data,

� data needed for signature verification,

� mutual device authentication data, and

� data related to the communication between SigCard and
IFD.
The asset of an object is stored in an internal variable of

the component. This way it cannot be accessed directly.
Each access operation is modelled as a distinguished action.
The action is enabled according to the access rights based
on the current authentication state. Each object component
has an output channel representing the output of the SigCard
generated by that object. This can be the value stored in the
object or some other value computed using the stored value.

Components for Secure Communication Input and out-
put of the SigCard never enter or leave the object com-
ponents or the automaton component directly. All in-
put and output passes through the SecChannelIn resp.
SecChannelOut component. These components are re-
sponsible for secure messaging. Outgoing messages are
signed and encrypted, incoming messages are decrypted and
their signatures checked. If secure messaging is not in force
(before device authentication) then these components only
forward input and output values.

The SecChannelIn component performs a loop con-
taining two actions. The first action simply waits until the
input variable channelIn contains the value noInfo. In-
put is only read thereafter when channelIn has changed
to a value indicating a regular piece of information. This
prevents the same input from being processed twice. At the
end of each loop the SecChannelIn component (auto-
matically) stutters allowing the other components to work
on the input and produce appropriate output.

The SecChannelOut component performs the comple-
mentary loop consisting of an operation which passes the
output produced by an object or the Automaton compo-
nent to channelOut followed by an action which sets
it back to noInfo. Both loops run in parallel with each
other and with the main processing loop specified in the
Automaton component.

3The digital signature application itself is referenced as an ob-
ject in [GST]. This is not reflected in the FMSP since such self
referencing constructions cause some problems in formal specifi-
cations.



Results and Benefits
The generic security target [9] and the accompanying FMSP
for SigCards were developed in a parallel manner. The for-
malization process of the security policy started with a first
draft of the GST describing only some parts of the SigCard’s
security features. The description was completed step by
step. Each extension of the GST caused a new analysis try-
ing to include the additional features in a formal style within
our model. A lot of inconsistencies and contradictions in the
GST drafts were discovered during the analysis and formal-
ization process.

This is a general observation from all other formaliza-
tion projects which we go ahead with. This means that the
must to formalize a specific security behaviour alone accom-
plishes a specific security advantage. Always small modifi-
cations may cause serious errors which are not recognized if
specified in natural language only.

In the present case a minor modification introduced in the
almost final GST document caused a serious security prob-
lem. The security policy described in this late release of the
GST always allowed to pass from CAS1 to CAS2 (cf. Fig. 2)
via SRE3 which was defined to unconditionally activate the
signature application. We observed that SO2.2 (cf. Fig. 1)
was not provable. Indeed, the reason is that it was not valid,
because at least one authentication attempt was allowed in
CAS2. Implementing the SigCard application according to
such a security policy would allow a potential attacker to
brake the cardholder authentication by a brute force attack.
Finally, the formally verified security policy replaces the for-
mer SRE3 by two events as presented in Fig. 2. This exam-
ple impressively demonstrates the benefits of formal meth-
ods since although the actual design flaw can easily be ex-
plained it remained undetected until the formal verification
attempt failed.

Furthermore a potential vulnerability in the security pol-
icy of the standardized SmartCard was detected. Accord-
ing the law a cardholder can calculate his signature with his
SmartCard connected to his private/company interface de-
vice or a ‘public customer service terminal’. In the case of
a ‘public customer service terminal’ it was detected that the
cardholder himself has a large responsibility in analyzing
whether the ‘public customer service terminal’ really is a
trusted device before trying to authenticate himself.

The formal model of security policy defines the essential
security behaviour of the SigCard and necessary assump-
tions on the environment in an abstract description as ex-
plained in the previous chapter. In such a situation it is pos-
sible to gain a complete survey of the security specific con-
cepts and their interactions in one context. Once the security
objectives based on the security policy layer have been for-
mally verified then a complete knowledge about the security
interdependencies on that level of abstraction exists. Fur-
thermore, the benefit for the evaluation task is that the eval-
uator can check the real IT product very effectively against
the formally specified security behaviour.

Today, the whole power of FMSP’s is not completely un-
derstood. In most cases the development of a FMSP is per-
formed only for evaluation purposes because the current se-
curity evaluation criteria like ITSEC or CC demand such a

FMSP. Normally, the whole evaluation work is done after the
development of the product. This includes the construction
of the model, too. Looking a little bit deeper into the model
it is obvious that the security policy layer could be an ex-
cellent requirement specification for the implementation of
the security functionality of the product. Using it in such a
manner helps to develop the product in a way that its imple-
mentation meets the security objectives. The consequence of
this observation should be to use formal methods already in
the early design phases of a product giving good assistance
to the system designer. Today, we give away this very cost-
effective advantage of the formal modelling by performing it
only for isolated evaluation purposes. One reason for this is
that the system designers are not familiar with formal spec-
ification languages based on logics like VSE-SL, necessary
for the formalization work.
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