
Towards Dependable Development Tools for Embedded Systems
A Case Study in Software Verification*

Uwe Petermanu
Dept. of Computer Science

University of Applied Sciences Leipzig
P.O.B. 300066

D-04251 Leipzig (Germany)
uwe@imn, htwk-leipzi E. de

Abstract

This case study describes the specification and formal
verification of the key part of TeCOM, a development
tool for the design of open loop programmable con-
trol developed at the University of Applied Sciences
in Leipzig. TeCOM translates the high-levei repre-
sentation of an open loop programmable control into
a machine executable instruction list. The produced
instruction list has to exhibit the same behavior as
suggested by the high-level representation.

We discuss the following steps of the case study: char-
acterization of the correctness requirements, design of
a verification strategy, and the correctness proof.

Key words: program verification, modular specifi-
cation, interactive proving, programmable control

Introduction
Below we describe a case study devoted to the verifi-
cation of essential parts of a development tool for pro-
grammable open loop control. This verification task is
not an academic one. The translator TeCOM, which
is subject to the verification is used by an engineering
enterprise. The output of the program being verified
serves as embedded software in safety relevant indus-
trial installations. Therefore a formal verification is
necessary. The verification is carried out in a tight
co-operation with the authors of the translator.

TeCOM -- the subject of verification

The translator TeCOM is part of a design suite for
open loop programmable control projects in industrial
plants. TeCOM bridges the gap between the process
execution plan (PREP), the graphical representation
of an open loop programmable control program, and
the instruction list which will be executed effectively
by a control device. The usefulness of this tool has

* Supported by the Federal Ministry of Education and
Research (BMBF) and by the Research and Transfer Center
at the University of Applied Sciences Leipzig.
Copyright © 2000, AAAL AII fi0hts reserved.

been proved by a number of successfully working con-
trol projects. Considerable savings of installation time
have been observed due to the process oriented rep-
resentation and the automated generation of the cor-
responding instruction lists. TeCOM hides the pecu-
liarities of a particular target language and supports
portable solutions. The well documented graphical
representation may be part of the contract between so-
lution provider and customer. Among the supported
goal languages are widely used languages like STEP5,
STEPT, DOLOG AKF, MEDOC-IL or FST 101. The
focus of the verification project is the generation of
the binary processing unit as the key fragment of an
instruction list. Other feature like arithmetic opera-
tions, handling of timers or input and output of various
siguals are also supported by TeCOM but remained
out of the scope of this case study.

The motivation for a formal verification

TeCOM should meet the following basic correctness re-
quirement. An instruction list which is the output of
TeCOM should exhibit the same behavior as the pro-
cess execution plan given as input. The constructed in-
struction list is embedded software in a control project.
The solution provider is responsible for the behavior of
the realized control solution.

Proof reading the generated instruction list, though
possible in principle, is error-prone and would cause
the lost of efficiency gains enabled by the automated
code generation.

Checking the correctness of the translation result
automatically following (Pnueli, Shtrichman, & Siegel
1998) looks promising. However, one of the basic
aims of the TeCOM-implementors was to obtain an
improved translator. Therefore the verification of the
translator itself was in the scope of interest. Nowadays
tools for formal specification and verification of soft-
ware make this possible. Correctness may be proved
with mathematical strength based on a formal specifi-
cation of the translation.

VERIFICATION, VALIDATION, & CERTIFICATION351

From: FLAIRS-00 Proceedings. Copyright ' 2000, AAAI (www.aaai.org). All rights reserved.

The verification tool KIV

The chosen specification and verification tool KIV
(Reif & Schellhorn 1997) supports the following soft-
ware development steps:

¯ specification and implementation of data structures,

¯ proof of correctness and security properties of the
implementation.

KIV supports structured specifications based on the
operations enrichment, parameterization, actualiza-
tion, union and renaming of specifications. The im-
plementation of one specification in terms of another
is defined by a module. The correctness of each mod-
ule does not depend on any other module. Therefore
the effort for proving the implementation correctness
of the whole project is linear in the number of the
modules of the project (Reif 1992). Advanced proof-
engineering techniques of KIV support the re-use of
proof fragments which remain correct after changes in
specifications or implementations. This is extremely
useful because many attempts are needed for design-
ing a correct program. Strong heuristics assure a high
degree of automation.

The compiler TeCOM
In this section we describe the main steps of the trans-
lation procedure which are performed by TeCOM.

The process execution plan

Figure 1 shows a sample process execution plan and
Figure 3 the instruction list obtained by its transla-
tion. Mathematically, the process execution plan is
a directed graph with nodes and edges labeled. Two
kinds of nodes can be distinguished. Those which are
represented by boxes are called operations. One of
them is distinguished as the initial operation. Oper-
ations are labeled by sequences of operation variables,
in the example: R, S or T. Operation variables corre-
spond to activities to be carried out by the process
which is subject to the control. The control triggers
those activities if the corresponding process conditions
hold. Process conditions are notated by rounded rect-
angles. Their labels are the process variables (A, B and
C in the example).

The semantics of a process execution plan P is de-
scribed by an automaton Ap (cf. Figure 2) with the
operations of P as states and the initial operation of
the process execution plan P as initial state. The input
alphabet of Ap is the set of valuations of process vari-
ables by Boolean values. Similarly, the set of valuations
of the process variables by truth values is the output
alphabet of Ap. For example, the label AB:R,S of the

362 FLAIRS-2000

Figure 1: A process execution plan

AB:T :~I~

~:T

Figure 2: The automaton assigned to the process exe-
cution plan in Fig. 1 and its factorization

transition from state 0 to state 2 means that this tran-
sition takes place if and only if process condition A is
satisfied and B not. In that case the process activities
R and S will be triggered. The behavior of process ex-
ecution plan P is the word function determined by the
initial state of automaton Ap. Automaton Ap is fac-
torized by a congruence relation ___ in order to achieve a
compact instruction list. The single non-trivial equiv-
alence class of the congruence of Ap in Figure 2 has
been indicated by a rounded rectangle.

The instruction list

The result of the translation of process execution plan
P in Figure I is the instruction list Lp in Figure 3. The
instruction list is given in an abstract form from which
it may be translated to the chosen target language.
Basically, the instruction list is an assembler program
operating on Boolean variables. There are three groups
of variables: input variables (corresponding to process
variables), output variables (corresponding to opera-
tion variables) and state variables corresponding to the
states of the factorized automaton ApI=_. A transla-
tion table is provided at the end of the instruction list.
The instruction list simulates state transition and out-

Stat*_Frapent :
IF NOT z{0,2} GOTO Eudz{0,2}
z{1} := zA A~ xB
IF z{X} RESET g{0,2}, hO, h2 OOTO Binary_Output
GOTO Output _Preparation

Endz{O, 2} :
IF NOT z{1} GOTO ~zclz{1}
z{Oo2} := xC
hO := zC
IF hO RESET z{1} 90’1"0 Binary_Output
GOTO Binary_Output

Endz{1} :
Output _Fral~snt
Output_Preparation:

IF NOT z{O,2) ~OTO ~dOutPrep{O,2}
hO := INT xA
h2 := xA AM) NOT xB

EndOutPrep{O, 2} :
Binary_Output :

yR :ffi hO OR h2
yS := h2
yT := z{l}

Automaton APIffi IL-Identifier
...

States: {0,2} z{O.2}
0 hO

2 ho
{i} ffi{i}

...

Operation variables: R, S, T yR, yS, yTj
Process variables : A, B, C xi, xB, xC,
...

Figure 3: The translation of the process execution plan
in Fig. 1 in an instruction list

put generation of the factorized automaton. The op-
erating system of the open loop programmable control
executes the instruction list repeatedly in an infinite
loop. The three main parts of the instruction list are:

State fragment: The code fragment before the la-
bel 0utput_Preparation serves for determining the
subsequent state depending on the current one.

Preparation of the output: The code fragment
between the labels 0utput_Preparation and
State_Fragment is executed if a non-trivial equiv-
alence class is reached from the current state. This
is necessary for determining the current state of the
original automaton.

Computation of the output: The code fragment
starting with the label Binary_0utput. It is exe-
cuted in order to compute the output.

Translating a process execution plan

The translation of a process execution plan P into an
instruction list consists of two steps. The input of the
first step is a representation of the process execution
plan and an equivalence relation - on its set of opera-
tions. The output of the first and input to the second
translation step is a representation of the factorized

automaton Ap I-- which allows a rather straightforward
generation of the instruction list.

Proving the correctness of TeCOM

In this section we identify the correctness conditions
which should be verified and give an outline how to
construct the correctness proof.

The verification task

The translator verification task will be discussed fol-
lowing a four step approach leading to a fully verified
compiler (Langmaack 1997).

The first step consists of the definition of the map-
ping from the source language (the set of correctly
formed process execution plans) to the target language
(the set of correctly formed instruction lists), the defi-
nition of the semantics of both source and target lan-
guage (in our case given for both languages by au-
tomata) and the definition of the correctness criterion
for this translation. The translation is called correct if
an instruction list L computed by TeCOM describes,
up to renaming of the input and output alphabets, the
same word function determined by the initial state as
the process execution plan P given as input.

The second step is to prove the translation cor-
rectness. Here this means to prove the equality of the
word functions determined by the initial states of the
automata Ap and AL (up to renaming of alphabets).
This formal proof is straightforward.

In the third step a host language for the com-
piler implementation has to be chosen. The authors
of TeCOM choose Delphi-Pascal. The verification of
the Delphi compiler had to remain beside the scope of
our project for obvious capacity reasons. Therefore,
any of our correctness results can be formulated only
relative to the correctnes of a Delphi-compiler.

The fourth step is to prove that the compiler im-
plementation is correct with respect to the chosen host
language. For this purpose we define construction prin-
ciples relating a process execution plan P and an in-
struction list L which are sufficient for the equality of
the behavior of the associated automata Ap and AL.
Let us mention some of the construction principles.

(1) There is a bijective relation between the sets of states
of the automatons Apl= and AL.

(2) Bijective relations of the input and output alpha-
bets of the automatons Apl_- and AL are determined
by renamings of the operation variables and process
variables.

(3) Every state of the factorized automaton is repre-
sented by a code fragment of the state fragment of
the resulting instruction list.

VERIFICATION, VALIDATION, & CERTIFICATION363

TIL_Output =
enrich TIL_Output-0 with
functions

til_output-build : toutput --~ til_output ;
axioms

til_outputo = til_output-build(toutputo)
A toutput-occurs(toutputo, nato)

--~ til_output-find(til_outputo, nato)
= tdisj unction-intlist 2dis

(toutput-find(toutputo, nato))
end enrich

Figure 4: The specification TAWL-husgabe

This code fragment represents the set of direct suc-
cessors of the mentioned state and the state transi-
tions from that state.

(4) Every non-trivial equivalence class of automaton Ap
is represented by a code fragment of the output
preparation part of the instruction list AL.

This code fragment allows us to determine which one
of its elements has been reached.

(5) For every process variable there exists a code frag-
ment in the output part of the instruction list L.

This code fragment represents the set of all states of
the automaton Ap which are labelled by the consid-
ered process variable.

Those construction principles serve as correctness as-
sertions which should be satisfied by the implementa-
tion. They are subject to a formal verification by the
help of the specification and verification tool KIV.

The verification approach using KIV

In the present section we give an overview of the tool-
supported formal verification of the implementation
against the construction principles.

In order to keep the verification task manageable
only a small number of basic data structures, e.g. lists
and dictionaries are used. Those data structures are
generic and can be actualized in various ways. All
theorems proved about a generic data structures are
available in every one of its actualization.

Specification TIL_Output (Fig. 4) illustrates this
approach. This specification axiomatizes the func-
tion til_output-build, which transforms an intermedi-
ate representation of the binary output, a value of
sort toutput from specification TOutput, into its fi-
nal form, a value of sort til_output from specification
TIL_Output (cf. Figure 6). Values of sorts toutput
and til_output are dictionaries (cf. Fig. 5) which have
been actualized according to Figure 7.

354 FLAIRS-2000

dictionary =
generic specification
parameter TKey, TEntry target
sorts TDictionary;
constants emptydict : TDictionary;
functions

adjoin : TDictionary x TKey × TEntry
-~ TDictionary ;

find : TDictionary x TKey
-~ TEntry ;

...

predicates occurs : TDictionary x TKey;
variables d2, dl, d: TDictionary;
axioms
dict generated by emptydict, adjoin;
find(adjoin(d, ka, a), ka)
ka ~ kh --+ find(adjoin(d, kb, b), ka) = find(d,
...

end generic specification

Figure 5: The specification TDictionary

TIL_Output-0 =
actualize TDictionary

with TDisjunction, TOutput by morphism
tdictionary -~ til_output,
entry -~ tdisjunction,
key -~ nat

end actualize

Figure 6: The specification TAWL-husgabe-0

The considered axiom of specification TIL_Output
asserts that the result of function til-output-build pro-
vides for each key nat0, which occurs in the argu-
ment toutput 0 of function til_output-build, an entry
which has been constructed by function tdisjunction-
intlist2dis from the entry toutput-find(toutputo, nato)
which was associated with key nato in the argument
toutput0 of til_output-build. Further axioms, not men-
tioned because of lack of space, assert that in the result
of til_output-build occur the same keys as in the argu-
ment.

A module implements specification til_output using
specification toutput as its import specification. The
module provides a procedure for computing the value
til-output-build(toutput0) by a simple while-loop. Be-
cause of lack of space we give some rather statistical
information concerning one proof, the proof of the ter-
mination of the call of the implementation of function
til-output-build. The proof consists of 30 steps and is
rather straightforward. A slight generalization of the
thesis (lst interaction) prepares the induction proof
(2nd interaction). After unfolding the while-loop once
(3rd interaction) the system completes the proof auto-

Corresponding parameter sorts in
generic specification actual specifications

TDictionary TDisjunction TIL_output-0
key nat nat

entry tdisjunction til_output

Figure 7: Actualizations of specification TDictionary

matically using 12 simplifier rules which mirror prop-
erties of the underlying data structures.

Clearly, much more interesting proofs have been con-
structed by the KIV developers and other users. Nev-
ertheless, in our opinion it is an important experi-
ence that the use of standard techniques at the coding
level allows the systematic construction of correctness
proofs. It seems to be not realistic to expect that usu-
ally correctness proofs are really difficult proofs which
need a deep mathematical invention. Rather it should
be possible to find them by good (proof) engineering
practice supported by strong heuristics of the verifier.

Implemention vs. specification language

TeCOM is part of a larger project which has been im-
plemented in Delphi-Pascal. The implementers pref-
ered to use a homogeneous software platform for im-
plementation. Therefore none of KIV’s code generators
producing LISP or C++ code could be used. Rules
have been formulated for a subset of the target lan-
guage which guarantee the conformity of the Delphi-
code with the corresponding KIV-code. The confor-
mity conditions assure that the correctness result ob-
tained for the implementation expressed in KIV-code
can be carried over to the Delphi-code.

Results and experiences

After carefully analyzing the code provided by the
implementers the verification team decided to re-
implement an essential fragment of the code -- the
generation of the binary processing unit of the instruc-
tion list -- in order to improve the program structure.
This way the verification task became realistic. If pro-
gram development and verification would have been
done in parallel a considerably larger part of the soft-
ware could have been verified. Verification needs very
clearly structured programs. Writing those program is
nothing else than good software engineering practice.

One of the essential bugs found during the verifica-
tion is the incorrect treatment of transitions to states
which belong to non-trivial equivalence classes. The
PrEP in Figure 1 and its two modifications in Figure
8 show three variants of paths leading from a process
operation, i.e. from state 1 labelled by T via process
condition C, to the equivalent states 0 or 2. In the

P

Figure 8: Two modifications of the PrEP

variants shown in Fig. 1 and 8 (left) the outgoing "y"-
labelled edge of process condition node C leads either
directly to a process operation, i.e. 0, or to the first
process condition, i.e. A, within a path connecting
the two equivalent states. The original implementa-
tion treated those cases correctly. It seems that the
third case, illustrated by 8 (right), has been overseen.
The solution of the problem which has been chosen in
the revised version of TeCOM is to treat case 3 as a
"direct" transition analogously to case 2.

Summary and outlook

We described the current state and experiences gained
in a verification experiment which is devoted to a devel-
opment tool for embedded software - the instruction
list generator TeCOM. The experiences suggest that
verification of real programs becomes feasible. At least
critical fragments are in the range of present verifiers.

Acknowledgements

Thanks to E. Alder and A. Pretschner for their de-
termination to verify TeCOM, to I. Klein for his co-
operation, and to the referees for their helpful remarks.

References

Langmaack, H. 1997. Contribution to Goodenongh’s
and Gerhart’s Theory of Software Testing and Veri-
fication: Relation between Strong Compiler Test and
Compiler Implementation Verification. Foundations
of Computer Science: Potential-Theory-Cognition.
LNCS 1337:321-335.

Pnueli, A.; Shtrichman, O.; and Siegel, M. 1998.
Translation validation for synchronous languages.
Lecture Notes in Computer Science 1443:235-246.

Reif, W., and Schellhorn, G. 1997. Theorem proving
in large theories. In Proceedings of the I4-th Interna-
tional Conference on Automated Deduction (CADE-
t4). Springer-Verlag. LNAI.

Reif, W. 1992. Verification of large software systems.
Lecture Notes in Computer Science 652:241-256.

VERIFICATIONI VALIDATION, & CERTIFICATION35S

