
Modelling, Specification and Verification of an Emergency Closing System

Werner Stephan and Georg Rock and Michael Brodski
Deutsches Forschungszentrum für

Künstliche Intelligenz (DFKI GmbH)
[German Research Center for Artificial Intelligence]

Email: stephan,rock,brodski@dfki.de

Abstract

In this paper we present a realtime modelling tech-
nique which is based on a global clock architecture
with a discrete time scale. We argue that this model
can be applied to a wide range of scenarios. Further-
more we illustrate the modelling technique by an ex-
ample describing an emergency closing system which
is specified in the VSE tool (Hutter et al. 1999;
Rock, Stephan, and Wolpers 1997; 1999).

Introduction
In this paper we present a realtime modelling technique
which is based on a global clock architecture with a discrete
time scale. We argue that this model can be applied to a
wide range of scenarios. Furthermore we illustrate the mod-
elling technique by an example which describes an emer-
gency closing system (ECS) that physically consists of sev-
eral huge gates to isolate the North Sea from the Eastern
Scheldt, a control system and several sensors to measure
the water levels inside and outside the gates. The emer-
gency control system which is part of the overall system
keeps track of the changes of the water levels and closes the
gates if the water level gets dangerous. The specification and
the proofs are done with the VSE tool (Hutter et al. 1999;
Rock, Stephan, and Wolpers 1997; 1999).

The paper is organized as follows: We first describe the
general techniques to model realtime systems. After a dis-
cussion of the general structure of the ECS we present the
VSE specification preceeded by a short introduction to the
VSE tool. We close by mentioning future work in this area.

General Principles
In this section we discuss the general techniques used to
model real time systems like the ECS. Since ECS is a very
special system which in some aspects might not be consid-
ered typical for the kind of systems the methodology is de-
signed for, the discussion in this section is more general than
necessary for the formal model of the ECS.

Requirement Engineering Process
A formal model like the one of the ECS is only one con-
stituent of the overall requirements engineering process.

Copyright c 2000, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Starting point in the case of the ECS is a document con-
taining the (informal) requirements specification.

The requirements are given by verbal descriptions and an
informal, mainly graphical design of the system. The most
important requirements deal with the behaviour of the sys-
tem in time. While the verbal description is not very precise
and therefore not sufficient in itself the graphical description
contains many details of a particular solution, actually it is
already close to a technical realization.

Our aim was to provide a formal requirements specifica-
tion that does not refer to the internal structure of the system
and then to prove that these requirements are satisfied by a
system specification that is as close as possible to the design
given in the document. In contrast to the technical descrip-
tion in the document, the formal system specification does
not use concrete physical entities, like seconds, meters, and
milliamperes. In a separate step one would have to choose
concrete values that are in accordance with the constraints
given by the formal specification.

Overall Structure of the Model

The formal model consists of three components: the sys-
tem the environment, and a component containing a global
clock (see Figure 1). The system takes as inputs values
from sensors measuring various water levels and values from
switches that are set by an operator. Basically it computes
two output signals, one for closing the barrier and one for
opening it again. The design is fail safe in the sense that the
first signal going down means close.

Both, the environment and the clock are separated from
the system to allow for a refinement of the abstract speci-
fication to the actual system. The environment comprises
changes of the water levels as well as changes of the
switches. In this case there are no complex assumptions
about the possible behaviour of the environment. However,
steps of the three components have to be synchronized to
model assumptions about the behaviour in time. In par-
ticular not all states can be given a meaningful interpreta-
tion. Therefore the component containing the clock upon
each tick updates certain visible variables. All the remain-
ing variables are internal and cannot be accessed by an ob-
server. Note that the synchronization among the components
as well as the choice of observable variables implicitly for-
malize our way of looking at the system and are therefore

From: FLAIRS-00 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved. 



relevant for the notion of correctness1.
The requirements specification only refers to the visible

variables and has no access to the variables local to the sys-
tem and also the synchronisation mechanism. However, it
uses a variable time that gives the current time in each state.

Figure 1: The complete scenario

Time
We assume a global discrete time scale with a clock that in-
creases the value of a flexible variable time (of type Nat)
by one upon each tick. By a small example (different from
the ECS) we illustrate the general approach and argue that
it is applicable for many scenarios where the granularity of
the time scale can be fixed afterwards.

Figure 2 shows a possible behaviour of a system that re-
acts to an input signal (signal1). A safety requirement would

Figure 2: A possible behaviour of a real time system

be the following: If signal1 is high for at least 1

500
sec start-

ing from t0 and signal2 is low at t0, then after at most 1

100

sec signal2 will be high for at least 1

4
sec. If for the time

points t0; t1; t2 and t3 shown in the diagram, we have the

1Perhaps this could be compared to a test bed.

conditions

t1 � t0 �

1

500
sec

t2 � t0 �

1

100
sec

t3 � t2 �

1

4
sec

then this particular behaviour fulfils the requirement.
The aim is to provide a formal specification of the system,

(assumptions about) the environment, and the clock, where
in more complicated cases the system specification might by
structured into several components running in parallel. In a
separate specification we formalise safety requirements like
the one above. Since in the formal model we use a discrete
time scale we have to replace concrete durations by con-
stants that stand for an arbitrary but fixed number of time
steps. The above mentioned requirement could be formu-
lated as a temporal logic formula in VSE as follows:

28 t0:(((t0 = time ^ signal2 = low ^

2(t0 � time � t0 + d1 ! signal1 = high))

!

9 t2:((t2 � t0) � d2 ^

2((t2 � time � t2 + d3)! signal2 = high)))

In this example the premise that signal1 is high for at least
d1 time units and the allowed delay of d2 time units take into
account the fact that the system might need a certain time d4
to react and also a certain time d5 to compute new output
values. In the case of ECS both reaction time and compu-
tation time are considered to be zero according to the given
documents. For d3 it holds that t3 � t2 � d3. In order to
prove the timing requirements the specification has to make
certain assumptions about relations between the durations
mentioned. In our example the assumptions d4 � d1 and
also (d4 + d5) � d1 are required.

Having successfully proved the safety requirements we
are free to choose concrete values for a time step. If all du-
rations are given as rational numbers the only constraint is
that a single step has to be small enough to have all durations
as multiples of this value.

Verification Support Environment
In this section we first describe the Verification Support En-
vironment (VSE) tool which was used to specify the model
and to verify the properties of the system. In the second part
we go into more detail with respect to the specification itself
and give some hints to the proofs done in VSE.

The VSE Methodology
The VSE system is a tool for the formal development of
software systems. It consists of: A basic system for editing
and type checking specifications and implementations writ-
ten in the specification language VSE-SL, a facility to dis-
play the development structure, a theorem prover for treating
the proof obligations arising from development steps as for
example refinements, a central database to store all aspects
of the development and an automatic management of depen-
dencies between development steps.



Compared to VSE I (Hutter et al. 1996a; 1996b), which
was based on a simple, non-compositional approach for state
based systems, VSE II (Hutter et al. 1999) is extended
with respect to comprehensive methods in order to deal
with distributed and concurrent systems (Rock, Stephan, and
Wolpers 1997) and with respect to an even more efficient and
uniform proof support which makes use of implicit structur-
ing of the arising proof obligations. The basic formalism
used in VSE II is close to TLA (Temporal Logic of Actions)
(Lamport 1994). A refined correctness management allows
for an evolutionary software development.

VSE is based on a methodology to use the structure of
a given specification (e.g. parameterisation, actualisation,
enrichment, or modules) to distribute also the deductive
reasoning into local theories (Rock, Stephan, and Wolpers
1999). Each theory is considered as an encapsulated unit,
which consists of its local signature and axioms. Relations
between different theories, as they are given by the model-
theoretic structure of the specification, are represented by
different links between theories. Each theory maintains its
own set of consequences or lemmata obtained by using local
axioms and other formulas included from linked theories.

This method of a structured specification and verification
is reflected in the central data structure of a development
graph (see Figure 3), the nodes of which correspond to the
units mentioned above. It also provides a graphical interface
for the system under development.

Concurrent System Specifications
The system architecture of the ECS case study shown in Fig-
ure 1 indicates the components constituting the complete
system including the environment specification. In the de-
scription of these units elementary specifications and dif-
ferent structuring operators for state based systems are used.

Elementary Specifications
For the specification of state transition systems a specifi-
cation language close to TLA (Abadi and Lamport 1991;
Lamport 1994; Abadi and Lamport 1995) is used. In addi-
tion to the theory of compositional development presented in
(Abadi and Lamport 1995), which covers the composition of
systems using input and output variables, shared variables
are supported by the structuring operators in VSE II. The
form of a specification of a component, also discussed in
(Abadi and Lamport 1995), is

99 x1; : : : ; xn :(INIT ^ 2[SYS-STEPS]�v ^ FAIR);

where SYS-STEPS are the actions (steps) made by the sys-
tem, �v is the stuttering index, which contains flexible vari-
ables of the system, INIT is a predicate which holds initially,
x1; : : : ; xn are the internal variables and FAIR stands for the
fairness requirements of the system.

Structuring of Specifications
VSE II provides operators to structure state-based specifica-
tions. We only focus on the combine-operator which mod-
els the concurrent execution of components. As can be seen
in Figure 3, the SVKO combine specification consists of
the (concurrent) composition of the environment data,

the SVKO system and the Update components. Concur-
rency is modelled by considering all possible interleavings
of actions of the combined systems. Basically a behavior �,
which represents a sequence of states of the specified sys-
tem, is a behavior of the combined system if and only if
it is a behavior of every component of the system. How-
ever, in order to model the concurrent execution of, say S1
and S2, by conjunction, we have to allow environment steps
in the (local) specifications of S1 and S2. In (Abadi and
Lamport 1995) environment steps are modelled by stutter-
ing. This technique only works for communication by input-
output variables, not in connection with shared variables. A
more general approach (Rock, Stephan, and Wolpers 1999;
Hutter et al. 1999) is to associate a “colour” with each com-
ponent and to mark each step in a behavior by the colour of
the component which has done the step.

Structured Deduction
Structuring specifications as described above supports read-
ability and makes it easier to edit specifications in that the
user might use local notions. However, the system exploits
structure beyond this purely syntactical level. Components
of a combined system can be viewed as systems in their own
right where certain parts can be observed from outside while
most of the inner structure, including the flow of control and
local program variables are hidden.

In particular we can prove properties of a combined sys-
tem like ECS in a modular way. This means that we at-
tach local lemma bases to components where local proofs
are conducted and stored. Exchange of information between
lemma bases is on demand. This approach has two main
advantages: First, the given structure of the specification is
used to reduce the search space in the sense that large parts
of the overall system are not visible and second, storing of
proofs local to certain lemma bases and making the export
and import of information (between lemma bases) explicit
supports the revision process.

The Formal Model
The specification of the ECS is modelled with the VSE tool
described in the preceeding section. The development graph
of the specification is shown in Figure 3. The structure
of the development graph is very similar to the descrip-
tion of the scenario given in Figure 1. The three nodes
environment data, SVKO system and Update from
Figure 3 correspond to the env, system and update
nodes of Figure 1, respectively. The node SVKO combine
in Figure 3 represents the composed system consisting of
three concurrent components. The properties the system has
to satisfy are specified in the temporal logic specification
SVKO safety.

Synchronisation
According to the document we started with it can be as-
sumed that the system immediately (i.e. without any delay)
notices a change of the input variables caused by the envi-
ronment or the clock and needs no time to compute an out-
put. Obviously the concurrent execution of the three com-
ponents has to be restricted appropriately to model this as-
sumption. For example, if the enviroment changes the water-



level and the clock ticks twice before the system has com-
puted possibly new output values, then there can be an in-
termediate state where a safety requirement is violated. So
the clock has to be blocked until the system has finished its
computation. Note that also in cases where there are cer-
tain (restricted) reaction and computation times a similar,
slightly more complicated scheduling regime is necessary to
rule out behaviours where reaction or computation takes to
much time. In all these situations fairness which forces a
step to be executed sometimes in the future is not enough.

Technically the scheduling among the three components
is realized by shared variables acting as guards (indicated
by circles within the components in Figure 1). An action
(step) of a component can only be executed if the guard's
value is true.

Unless there was a tick of the clock the variable time has
the same value. Hence the environment having changed the
input of the system and the system having computed certain
outputs the clock should tick, because otherwise we would
have two different situations with the same time stamp.

But even if the clock ticks frequently enough for the in-
termediate states we have different input values at the same
point of time. Moreover, immediately after the environment
has changed some input values the output values of the sys-
tem might not have the values requested by the requirements
specification.

To overcome this problem we distinguish between inter-
nal variables and variables visible to the outside. The en-
vironment, the system, and the clock change only internal
variables. Whenever the clock ticks the corresponding vis-
ible variables are updated with the current values of the in-
ternal ones. The observable variables remain the same in
the intermediate states mentioned above. If the internal vari-
ables are finally hidden (by existential quantification over
flexible variables) no regular behaviour can be observed for
them in the resulting system. Note that still there has to be
a tick of the clock and the new values of the internal vari-
ables become visible to the outside whenever the system has
updated its output values.

There are many ways of implementing these rules. We
have chosen a liberal implementation shown in Figure 1.
The underlying datatype definitions are made in the theories

Figure 3: The VSE development graph of the ECS

StatFunctions and BasicDatas (see Figure 3). The
theories natural and boolean are predefined theories in
the VSE system.

In the following we describe the specifications of the dif-
ferent components.

Environment Specification
In our application scenario, the physical environment con-
sists of the natural changes of waterlevels which have vari-
ous complex causes. Since we do not want to specify these
causes and since our main interest is in specifying the real-
time behavior of the SVKO system we have specified the
environment as abstract as possible. There is only one ac-
tion which represents the change of the (inside and outside)
waterlevel sensors. These changes are transmitted to the
SVKO system and to the Update component.

System Specification
The data delivered from the environment to the system
are the values of the inside and outside waterlevel sensors.
These data are used in the SVKO system to compute the
values of two signals: the CLOSE and the OPEN signal. If
the CLOSE signal is true, then the system should close the
gates and if the conditions for the OPEN signal are true then
the system should again open the gates.

The computations the system does are modelled in a sin-
gle action and are separated into two parts: a static and a
dynamic part. In the static part we have modelled diagrams
from the original (graphical) description of the ECS as ab-
stract datatypes and their corresponding functions. A very
simple example is a 2=3 voter. It returns true if at least two
of the three inputs are true and false otherwise. This voter
is specified simply as a predicate voter2from3 with the
following axiomatic definition:

ALL sig1, sig2, sig3 :
voter2from3(sig1,sig2,sig3) <->
(sig1 = T AND sig2 = T) OR
(sig2 = T AND sig3 = T) OR
(sig1 = T AND sig3 = T)

The specification of the dynamic part is more complex. This
is mainly concerned with the description of the timing be-
havior of the system. To give an example think of a monos-
table multivibrator which starts working by a high to low
trigger and then keeps the output signal low for at least d
time units and leaves the signal high in all other cases. To
remember the values on the input line of the multivibrator
in order to determine if such a trigger has happened, we
have inserted a flexible variable (CLOSE TRIGGER) which
stores the “old” value on the line and the current value. De-
pending on the relation between the old and the new value
the multivibrator is active or not. This again is specified by
a timer (timer CLOSE) which is set in case that the multi-
vibrator is active and which remains unchanged in all other
cases. The following specification part models such a multi-
vibrator:

IF (CLOSE_TRIGGER = T AND
CLOSE_TRIGGER' = F)

THEN timer_CLOSE' = time + d
ELSE timer_CLOSE' = timer_CLOSE



In this formula we refer to a flexible variable time which
represents the actual time in the system. This variable is
sent from the Update component to the SVKO system
component.

Update Specification The specification of the Update
component models mainly two properties of the whole sys-
tem specification. First it filters the signals visible to the out-
side world, and second represents the global clock and incre-
ments the time variable. The specification of the update
component consists of a single action which increments time
by 1 in every step and makes the variables representing the
CLOSE and the OPEN signal and the variables representing
the waterlevel sensor values visible to the outside world.

Property Specification
The ECS should satisfy some safety properties which are
important for the right functioning of the system. We have
proven among others the following two properties:

1. 2(:(OPEN = T ^ CLOSE = T))

2. 2((time = t0 ^ Change Sensor Sig) =)

2((t0 < time � t0 + d + 1) =) Close = T))

Property 1 says that the OPEN and the CLOSE signal
are never true at the same time. Property 2 says that if
the waterlevels get dangerous (expressed by the formula
Change Sensor Sig) at time t0 then the system reacts by
setting the CLOSE signal to true for at least d time units be-
ginning at time t0 + 1.

The proofs of these properties are all done locally in the
SVKO system component. Property 1 could be proved
without the use of assumptions whereas the proof of prop-
erty 2 is more complex. It needs assumptions which have to
be guaranteed2 by the environment of the SVKO system.

Future Work
In the requirements engineering phase of this project we
have drawn pictures as for example given in Figure 2 to anal-
yse the timing behavior of the system we want to specify.
There we recognize that this way of analysing a realtime sys-
tem is not very satisfying since we are only able to describe
one special behavior with such a diagram. A more abstract
and structured way is to use timed automata (Alur and Dill
1994) or hybrid automata (Henzinger 1996) to specify the
timing behavior of a system and to integrate them in a for-
mal software development process which is fully supported
by a tool like VSE.

References
Abadi, M., and Lamport, L. 1991. The existence of refine-
ment mappings. TCS 82(2):253–284.
Abadi, M., and Lamport, L. 1995. Conjoining specifica-
tions. TOPLAS 17(3):507–534.
Alur, R., and Dill, D. L. 1994. A theory of timed automata.
Theoretical Computer Science 126:183–235.
Henzinger, T. A. 1996. The theory of hybrid automata. In
Proceedings of the 11th LICS, 278–292. IEEE Comp. Soc.
Press.

2This must be proved in the VSE system.

Hutter, D.; Langenstein, B.; Sengler, C.; Siekmann, J. H.;
Stephan, W.; and Wolpers, A. 1996a. Deduction in the
Verification Support Environment (VSE). In Gaudel, M.-
C., and Woodcock, J., eds., Proceedings Formal Methods
Europe 1996: Industrial Benefits and Advances in Formal
Methods. SPRINGER.
Hutter, D.; Langenstein, B.; Sengler, C.; Siekmann, J. H.;
Stephan, W.; and Wolpers, A. 1996b. Verification support
environment (VSE). High Integrity Systems 1(6):523–530.
Hutter, D.; Mantel, H.; Rock, G.; Stephan, W.; Wolpers,
A.; Balser, M.; Reif, W.; Schellhorn, G.; and Stenzel, K.
1999. VSE: Controlling the Complexity in Formal Soft-
ware Development. In Hutter, D.; Stephan, W.; Traverso,
P.; and Ullmann, M., eds., Proceedings Current Trends in
Applied Formal Methods, FM-Trends 98. Boppard, Ger-
many: Springer-Verlag, LNCS 1641.
Lamport, L. 1994. The temporal logic of actions. ACM
Transactions on Programming Languages and Systems
16(3).
Rock, G.; Stephan, W.; and Wolpers, A. 1997. Tool sup-
port for the compositional development of distributed sys-
tems. In Tagungsband 7. GI/ITG-Fachgespräch Formale
Beschreibungstechniken für verteilte Systeme, number 315
in GMD Studien. GMD.
Rock, G.; Stephan, W.; and Wolpers, A. 1999. Mod-
ular reasoning about structured TLA specifications. In
Berghammer, R., and Lakhnech, Y., eds., Tool Support for
System Specification, Development and Verification, Ad-
vances in Computing Science, 217–229. Springer, Wien-
NewYork.


