
Formal Software Development
in the Verification Support Environment (VSE)

Dieter Hutter Georg Rock Jörg H. Siekmann Werner Stephan Roland Vogt
Deutsches Forschungszentrum für Künstliche Intelligenz GmbH

[German Research Center for Artificial Intelligence]
Stuhlsatzenhausweg 3
D-66123 Saarbrücken

fhutter,rock,siekmann,stephan,vogtg@dfki.de

Abstract

The paper presents a survey of the VSE system, a kind of
CASE-tool for formal software development. It is a sum-
mary of a tutorial presentation describing methodology, for-
malisms, architecture, and proof support of the system. For
illustration a commercial application from the IT-security do-
main is used.

Introduction
On their way of becoming a mature discipline formal
methods have created a rich variety of logical formalisms,
methodological approaches, and tools. While there seems
to be a certain convergence with respect to formalisms we
are faced with a rapidly growing number of different ap-
proaches to apply formal methods in special scenarios. At
least for non-experts the situation is even more confusing
with respect to tool support as there are tools for editing,
(type-) checking, visualizing, and animating specifications,
for validation by testing or model checking, and for interac-
tive proof generation in various contexts.

As far as validation is concerned the main dichotomy to-
day is between logical inference (or deduction) and model
checking. In the logical (or axiomatic) approach mathemati-
cal models are described by statements of a logical language
and conclusions are drawn by using some (implemented) in-
ference mechanism. Typically in this area proof generation
requires some kind of user-interaction.

Model-checker start with a system description and ana-
lyze properties expressed in a logical language by an ex-
haustive search through the state space. In particular if
the system specification is given by a state transition sys-
tem the (explicit) use of logic is reduced to a minimum.
Model-checking is restricted to (practically) finite systems
and mainly used for validation. Axiomatic approaches are
more general in two aspects, they are applicable to all kinds
of systems and cover the whole development process.

The Verification Support Environment (VSE) tool pro-
vides a fairly general methodology based on the axiomatic
approach and offers comprehensive support and safety by in-
tegrating several services, in particular a powerful deduction

Copyright c 2000, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

component. It can perhaps best be viewed as a CASE-tool
for formal software development.

VSE was developed in two phases for the German Infor-
mation Security Agency (GISA) by consortia from industry
and academia. The tutorial presents an introduction to VSE-
II, the new version of the system. Although the system was
released in February 1999 it was already used in a number
of commercial projects at the time the tutorial was written.
One of these, a security model for chip cards, will be used
as a running example in this presentation.

In the next section we give an overview of the VSE
methodology and the basic architecture of the system. Af-
ter that there will be a closer look at the formalisms used in
VSE.

The VSE Methodology
Like in conventional software development we have to dis-
tinguish between the requirements phase and the design
phase. Formal software development starts with the con-
struction of an abstract system model according to a re-
quirements specification. The system model (given as an
axiomatic theory) provides the basic terminology and the
abstract solution. It does not necessarily reflect the architec-
ture of the system to be developed. Strictly speaking valida-
tion in VSE comprises both the design of the requirements
specification and the proof that the system model actually
satisfies the given requirements. In practice the abstract sys-
tem model and the requirements specification are developed
hand in hand.

Following general engineering principles there is a strong
emphasis on modularity as the main means to cope with
complexity. Due to the additional effort of carrying out
proofs the request for modularity is even stronger than in
software engineering in general. So at least the abstract sys-
tems specification will be structured into sub-specifications
ideally being as independent from each other as possible.
Most proofs arising from the requirements are then carried
out locally to these sub-specifications. The formal back-
ground of operators depend on the formalism under consid-
eration. In many cases also the requirement specification
will be composed out of several parts. There might be even
proofs necessary to show, for example, that a certain require-
ment is sufficient to establish a more general property.

The initial solution represented by the abstract system

From: FLAIRS-00 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved.

model is the starting point of the refinement process. In each
refinement step a specification is related to a more concrete
one. The underlying theory gives rise to proof obligations
that guarantee the correctness of the refinement step. Typ-
ically refinement steps involve a mapping that relates ab-
stract notions to the concrete ones that are used in the re-
fined system. For both formalisms supported by VSE there
are programming notions that allow for the introduction of
constructive solutions.

Formal development in VSE follows the invent-and-verify
paradigm, that is the more concrete ones and also the map-
pings that constitute refinement steps are given by the user.
Although this approach is more coarse grained than those
based on transformation or synthesis it is far from being a
post-mortem verification: In order to manage complexity in-
dependent sub-specifications are refined independently, and,
there are several intermediate layers between the abstract
specification and the level where all specifications are (effi-
ciently) executable and code can be generated by the system.

Figure 1: The VSE Methodology

Formalisms in VSE
Formal development in VSE is based on two formalisms:
abstract data types are used to specify data structures and
functional computations while a version of temporal logic
is used to specify the dynamic behavior of systems with a
persistent state. Although there is a fully developed method-
ology in its own right for abstract data types typically data
types are used to provide values for state dependent (flexi-
ble) variables in state based systems. Functional computa-
tions are then used to model single (uninterruptable) steps of
state based systems.

Abstract Data Types
Formal specification techniques treat data objects as math-
ematical objects of a certain domain. To get rid of the
technical details of data types in real programming lan-
guages one either considers a single rich domain as it is
done in Z, (Spivey 1992), or one abstracts away from
incidental properties of a particular domain by consider-
ing whole classes of structures as it is done in the ab-
stract data type approach, (Loeckx, Ehrich, & Wolf 1996;

Astesiano, Kreowski, & Krieg-Brückner 1999). Here data
objects are viewed as resulting from the nested application
of certain functions, a (concrete) data typ being given by a
collection of domains (carriers) and functions on these do-
mains. To introduce abstraction one separates syntax from
semantics and considers classes of algebras (or models) A
which are interpretations of a fixed collection � of function
symbols f as functions fA on the carriers of A. Classes of
algebras are restricted by axioms of a logical language (over
�) which usually is a sublanguage of first-order predicate
logic. The various approaches to abstract data types differ
in the classes of algebras that are considered and the corre-
sponding description techniques that are used for specifica-
tion.

In VSE full first-order logic is used to specify data types.
In general all models A satisfying the axioms Ax, written
A j= Ax, are considered. Two models A1 and A2 of Ax will
not necessarily be isomorphic, that is they differ not only in
the concrete representation of data objects. This allows for
a really abstract style of specification where one describes
what a function does but not how this is realized. A well
known example is encoding and decoding. On the abstract
level it might suffice to know that dec(enc(v)) = v leaving
open a wide range of perhaps highly sophisticated imple-
mentations for later refinements.

But VSE also supports a more constructive style of spec-
ification, that allows to introduce recursive data structures
like lists and trees. Classes of algebras are restricted by re-
quiring that certain carriers are generated by constructors
from some �0 � � which means that for each element a of
the corresponding carrier A, there is a term � over �0 that
denotes a, i.e. a = [[�]]. In particular we consider freely
generated structures where each element a 2 A has a unique
representation in �0. Fig. 2 shows the specification of lists
resp. the enrichment of an arbitrary data type with a single
additional element. Generated clauses bring about induction
principles that have to be used if inductive theorems or lem-
mata have to be proven. The axiomatic counterpart of these
clauses is generated by the system when the deduction unit
belonging to the specification is generated. In section tech-
niques for inductive theorem proving are discussed.

THEORY TAny
TYPES Any

THEORYEND

BASIC TMaybe
PARAMS TAny
Maybe = nothing WITH isNothing

| box(unbox: Any) WITH isBox
BASICEND

BASIC TList
PARAMS TAny
List = nil

| cons(first: Any, rest: List)
BASICEND

Figure 2: Freely Generated Data Types

So far we have discussed elementary (unstructured) spec-
ifications. In VSE there are two ways of structuring data
type specifications: generic specifications and the import of
specifications. By importing (using) possibly several spec-
ifications enrichment and (disjoint) union can be modeled
in VSE. Generic specifications provide an additional slot
(parameter part) to describe the formal parameter includ-
ing axioms. Upon actualization of a generic theory as part
of the using slot of some other theory proof obligations are
generated for these axioms. Fig. 2 is also an example for
a parametrised specification. The parameter theory TAny
contains a single definition for a type Any. So TList resp.
TMaybe can be instantiated to form lists of elements of any
kind resp. to enrich any data type with an additional (error)
value.

Structured theories are not flattened in VSE. Each speci-
fication is an entity in its own right and linked to other spec-
ifications according to the used specification building op-
eration. The semantic counterparts of these operations de-
termine the translation into logical formulas (renaming) and
also the flow of information between the units corresponding
to the specification entities.

VSE implements an elaborated theory of data type refine-
ments, (Reif 1992). Operations of an (abstract) export alge-
bra are implemented by programs that use operations from
some (more concrete) import algebra. The axioms of the
export specification give raise to proof obligations that are
assertions about the implementing programs. Properties of
the import specifications are used in the course of verifying
the assertions in a programming logic.

State-Based Systems

State-based systems are used to model reactive and concur-
rent systems. Their semantics is given by behaviors, i. e.
infinite sequences of states (�s = s0; s1; s2; : : :), where a state
s 2 S is a valuation of flexible variables x 2 X, s(x) being
an element of a carrier of an abstract data type. Therefore
specifications of state-based systems import (use) theories.

The basic ideas of the VSE approach to state-based sys-
tems are taken from TLA the Temporal Logic of Actions,
(Lamport 1994a). System steps are specified by a collec-
tion of so called actions which are first-order formulas that
in addition to logical (rigid) variables contain primed and
unprimed flexible variables. Both, in syntax and seman-
tics there is a straightforward relation to (basic) Z-schemata.
Actions A denote (binary) relations on the set of states,
[[A]] � S� S. Like in Z (flexible) variables not mentioned in
A change arbitrarily.

Temporal formulae ' describe sets of behaviors by us-
ing the (temporal) operators 2 (always), 3 (eventually),
and unless which are interpreted in the usual way, (Manna
& Pnueli 1991). The basic technique of specifying sys-
tems which needs some modifications discussed below uses
formulas of the form �init ^ 2(A1 _ : : : _ An). The first
order-formula�init defines the initial states while the actions
A1 _ : : : _ An describe the possible state transitions. Clearly
�s 2 [[2(A1_ : : :_An)]] iff for all i there exists a j, 1 � j � n,
such that si[[Aj]]si+1.

State-based systems can be structured into parallel com-
ponents. In simple cases we distinguish between input vari-
ables, output variables, and variables local to a component
C. Input variables i are read-only, that is there must be no
primed occurrences of i in the action definitions of C. Two
components C1 and C2 are composed by connecting (cer-
tain) input variables and output variables. Since we want
to model parallel composition by conjunction the specifica-
tions of C1 and C2 have to be modified. Both have to allow
stuttering with respect to certain variables. 2(A1_ : : :_An)
is changed to 2(A1 _ : : : _ An _ (x1 = x01 ^ : : : ^ xn = x0n))
abbreviated by2[A1_: : :_An]�x, where �x (typically) consists
of the output variables and local variables of a component.
Due to this modification system behaviors are always invari-
ant under stuttering which means that the Æ (next operator)
makes no sense in this context.

Having introduced stuttering it can be guaranteed that
with C1 and C2 also C1 ^ C2 is consistent and defines the
parallel composition of both components. Adding the addi-
tional constraint (as part of the description of the combined
system) that output variables of C1 and C2 are not changed
simultaneously, we obtain interleaved parallel executions.

If communication via shared variables is allowed, steps
of parallel components have to be “colored” in order to pre-
serve consistency. Steps of the component itself are distin-
guished from steps of the “environment” by using the pred-
icate active.

Parallel composition is the main means to structure state-
based specifications. As in the case of abstract data types
there is no flattening, that is proofs are carried out local to
the components of a combined system. However, in almost
all cases we need assumptions about the environment of the
component under consideration. VSE provides a correctness
management that rules out (unsound) circular reasoning in
using assumptions and also special deduction techniques for
assumption guarantee proofs. These are based on the col-
oring of steps and applicable not only for safety properties
(2�) but also for reactivity (23�).

In most developments one wants the local variables of a
system not to be visible to the outside world. Hiding is done
by existential quantification on flexible variables. Roughly
speaking one can say that x changes arbitrarily in all compu-
tations of 99x:'[x] independently of '.

Finally, like in most other temporal approaches specifi-
cations have to impose fairness constraints on the possi-
ble behaviors of a system. VSE supports the notions of
strong and weak fairness. The latter means that an ac-
tion A cannot be continously enabled (ready to execute)
without being taken, which is expressed by the formula
23taken(A) _23:enabled(A).

A simple imperative programming language allows to
model the sequential flow of control in basic components
(cf. Sec.). Using a local flexible variable for labels these
programs are translated automatically into action definitions
including suitable fairness constraints.

Refinement is logically modeled by implication between
temporal specifications. Stuttering steps in the abstract
model allow single steps to be replaced by whole computa-
tions in the more concrete design. To treat hidden variables

a refinement mapping is used during the refinement proof.
For parallel components being refined separately we again
need assumptions about the environment. In this case these
are restricted to safety properties.

Since both, refinement and the satisfies relation (between
system specification and safety/security requirements) is
modeled by implication complex security models can be
given by a structured specification of it’s own and related
to the abstract system model by refining one of the compo-
nents. This is done in our chip-card example. The secu-
rity model specifies the admissible traces using a state ma-
chine and also formalizes the knowledge obtained by an “ob-
server”. Fig. 3 shows a small part of the security model.

TLSPEC Objectives
USING TSigCard
DATA
OUT

oChannel: MInfo.Maybe
IN

iChannel: MInfo.Maybe
INTERNAL

authUser: bool;
secretKey: MInfo.Maybe

VARS i : Info
SPEC
[] secretKey = secretKey’;
[] NOT inferable(oChannel,secretKey);
[] ALL i:

(inferable(oChannel,sig(i,secretKey))
-> authUser = t)

HIDE iChannel, authUser, secretKey
TLSPECEND

Figure 3: Excerpt of a state machine specification

Use Case: Digital Signatures Devices
The German digital signature act (Signaturgesetz – SigG)
resp. the accompanying digital signature ordinance (Sig-
naturverordnung – SigV) prescribes the certification of all
related technical components according to standardized se-
curity criteria. Concretely, an evaluation based on the Euro-
pean Information Technology Security Evaluation Criteria
(ITSEC) is demanded. In order to meet SigG conformance
requirements, every signature component has to reach evalu-
ation level E4 of ITSEC. In particular, this requires a formal
security policy model which declaratively describes the im-
portant security features an IT product has to fulfill at an
abstract level.

The main goal of our use case is the development of a for-
mal security policy model for SmartCards supposedly being
in conformity with SigG. The formal modeling is serves as
a general reference and is publicly available for the develop-
ment of products according to ITSEC level E4 and above. In
this paper we are presenting a very small and incomplete ex-
cerpt of our formal model for digital signature devices (Sig-
Cards).

The idea underlying of the SigCard technology is to pro-
vide evidence that no one can generate a digital signature ex-

THEORY TFundamental
TYPES

Info; Subject;
Bucks = FREELY GENERATED BY
buckAutomaton | buckInput | buckOutput

FUNCTIONS
id: Subject -> Subject;
learns: Subject, Info -> Subject;
encode: Info, Info -> Info;
decode: Info, Info -> Info

PREDICATES
knows : Subject, Info;
inferable: Info, Info

VARS
i,k: Info;
s: Subject

AXIOMS
id(s) = id(learns(s,i));
knows(learns(s,i),i);
inferable(i,k) <->
EX s: knows(learns(s,i),k) AND

NOT knows(s,k)
THEORYEND

Figure 4: Fundamental data types

cept the legal card-holder. Speaking in technical terms this
means that a signature key is stored on the SigCard which
must be kept strictly confidential. There should be no way
to infer the secret key from any output generated by the Sig-
Card.

In order to be able to formally specify the security pol-
icy of SigCards we have to start with some fundamental
definitions. In Fig. 4 we introduce the abstract data types
Information and Subject. An element of type Sub-
ject is equipped with a certain amount of knowledge (el-
ements of type Info) which is indicated by the predi-
cate knows. Subjects can change by learning (function
learns) some new piece of information. The incomplete
collection of axioms shown in Fig. 4 states that

� the identity of a subject is independent of its knowledge,

� a subjects knowledge base contains all information previ-
ously learned, and

� the notion of information extraction relates two pieces of
information by the existence of a subject being able to
infer one from the other.

Finally, the theory TFundamental introduces a certain
number of tokens of type Bucks needed later on to express
the flow of control between otherwise independent state ma-
chines as well as two functions needed for establishing con-
fidential communication channels.

Since we want to reason about the input and output chan-
nels of a SigCard we have to distinguish between two prin-
cipal states: Either the channel contains a specific piece of
information or it contains nothing meaningful. This observa-
tion implies that nothing cannot be of type Info. There-
fore, we enrich the theory TFundamentalwith the help of
the type Maybe (cf. Fig. 2). In the resulting theory TSig-
Card (cf. Fig. 5) we extend the fundamental functions and

THEORY TSigCard
USING TFundamental;
MInfo = TMaybe[Info]

FUNCTIONS
noInfo: MInfo.Maybe;
noKey: MInfo.Maybe;
learns: Subject, MInfo.Maybe -> Subject

PREDICATES
knows: Subject, MInfo.Maybe

VARS i,j: MInfo.Maybe;
s: Subject

AXIOMS
FOR noInfo: noInfo = MInfo.nothing
FOR noKey: noKey = MInfo.nothing
FOR knows: DEFPRED
knows(s,i) <->

SWITCH i IN
CASE nothing: TRUE
CASE box:

TFundamental.knows(s,unbox(i))
NI

FOR learns: DEFFUNC
learns(s,i) =

SWITCH i IN
CASE nothing: s
CASE box:

TFundamental.learns(s,unbox(i))
NI

THEORYEND

Figure 5: Data type enrichment

predicates operating on type Info to the additional value
nothing.

Now, we are well prepared to abstractly specify the be-
havior of a SigCard as a collection of cooperating state ma-
chines. The central component of the formal security policy
model is the specification of the Automaton component.
It represents the principle operating states of the SigCard
and maintains state changes by appropriately reacting to all
security related events. Although this temporal logic specifi-
cation is the most important part of our use case concerning
the security aspect, it is of minor interest for illustrating the
concepts of our specification language. Therefore, we omit
it here and concentrate on two specifications handling the
input resp. output channels of the SigCard.

The purpose of the input stream component is to model
the input channel as a part of the SigCard interface
(cf. Fig. 6). It specifies a state machine that endlessly per-
forms a loop consisting of two alternating actions. Since
there is no hand shaking in the communication protocol we
have to distinguish different inputs by requiring a certain
gap between incoming pieces of information. The action
waitForNoInfo simply recognizes such a gap. It doesn’t
change any state variable and therefore acts like a guard for
the second action (prepareInput).

At this point the state machine stutters until the buck stops
here, i. e. until the overall control flow enables the action.
Then the next piece of information arriving at the input chan-
nel (iChannel) is read, decrypted, and transmitted to the

TLSPEC InputStream
USING TSigCard; natural
DATA OUT iData: MInfo.Maybe

IN iChannel: MInfo.Maybe;
iKey: Info

SHARED INOUT buck: Bucks
ACTIONS

prepareInput ::=
buck = buckInput

AND buck’ = buckAutomaton
AND iChannel /= noInfo
AND iData’ =

box(decode(iKey,unbox(iChannel)))
waitForNoInfo ::=

iChannel = noInfo
AND UNCHANGED(iData, buck)

SPEC
INITIAL
iData = noInfo

TRANSITIONS BEGIN
WHILE true DO BEGIN

waitForNoInfo;
prepareInput

END OD
END {iData, buck}

TLSPECEND

Figure 6: Model of the input stream

other components via the state variable iData. This step is
completed by transferring the control back to the Automa-
ton component.

The state machine OutputStream (cf. Fig. 7) models
the output channel part of the SigCard interface. It is the
dual of the InputStream component. After receiving the
buck, it encrypts the output data (oData) and writes it to
the oChannel. Due to its duality properties the next step is
to clear the output channel by generating the value noInfo.
Note, that the semantics of our specification language allows
the component to perform arbitrary many stuttering steps be-
tween two actions.

Working with VSE
The VSE systems basically consists of two components a
front-end for editing and visualizing specifications and a de-
duction component. Both components are fully integrated,
in particular with respect to the correctness management dis-
cussed below.

The front-end of the system provides a comprehensive
view on (partial) developments by a so called development
graph. Nodes in this graph correspond to the various speci-
fication entities, like theories (data type specifications), tem-
poral specifications, mappings, modules, and procedures.
These nodes are connected by links of certain types. Fig-
ure 9 shows the development graph for the formal model
discussed above. The node called ICC Policy contains
the temporal specification of a (generic) SigCard.

The import of theories into other theories or tempo-
ral specifications is given by using-links. In our example
ICC Policy and also other specifications use the theory

TLSPEC OutputStream
USING TSigCard; natural
DATA OUT oChannel: MInfo.Maybe

IN oData: MInfo.Maybe;
oKey: Info

SHARED INOUT buck: Bucks
ACTIONS
prepareOutput ::=

buck = buckOutput
AND buck’ = buckAutomaton
AND oData /= noInfo
AND oChannel’ =

box(encode(oKey,unbox(oData)))
generateNoInfo ::=

oChannel’ = noInfo
AND UNCHANGED(buck)

SPEC
INITIAL

oChannel = noInfo
TRANSITIONS BEGIN

WHILE true DO BEGIN
prepareOutput;
generateNoInfo

END OD
END {oChannel, buck}

TLSPECEND

Figure 7: Model of the output stream

TICC Policy which is the root of a complex theory struc-
ture. The subgraph corresponding to this structure, contain-
ing among others the theories shown above, is hidden in Fig-
ure 9. Other temporal specifications use additional theories.

Parallel composition of state-based systems is done by
linking a node that represents the combined system to the
nodes that represent the components. The combined node
contains the full description of the parallel system including
global aspects like interleaving and coloring. The behavior
of ICC Policy is given by the parallel execution of sev-
eral components, including InputStream and Output-
Stream from above. As already mentioned a component
called Automaton is governs the flow of control between
the other components by setting the (shared) variable buck.
Components (“objects”) O2 - O12 encapsulate the various
state-transitions of the system.

Requirements specifications (safety/security models) are
linked to system models by so-called satisfies-links. In our
example ICC contains the formal security requirements for
the card.

Theories, mappings, modules, and procedures (the actual
programs that implement abstract operations) are linked to-
gether to form refinement steps for data types. Refinements
of temporal specifications consist of two specification nodes
and a refinement mapping between them.

If one clicks on a node of the development graph a win-
dow containing the corresponding specification comes up.
Among others the user can now inspect or edit the specifi-
cation by importing a file (generated by ones favorite editor)
or, in particular in the beginning by using the built-in syntax
directed editor.

If a connected part of the development graph is completed
a routine for static analysis (type check) can be invoked. It
checks restrictions like for example the one mentioned for
input variables of state-based components. In the central
repository specifications that have been checked success-
fully are marked as being (syntactically) valid. They can
be translated to logical axioms in the deduction component.
In the graphical representation type checked components are
marked byX.

Certain links in the development graph, most importantly
satisfies links and refinement links, give rise to proof obli-
gations. After clicking on such a link the deduction com-
ponent is started and the user finds himself located within
the (deduction) unit that corresponds to the deduction prob-
lem defined by the link. So clicking on the link between
ICC Policy and ICC would generate reload a deduction
unit that contains as a proof obligation the implication be-
tween two (large) temporal formulae. Proof obligations and
axioms are generated by the system from the specifications
that constitute the development. In particular the transla-
tion into temporal formulae can be rather complex. It can
be thought of as implementing the intended semantics of the
various constructs of the VSE specification language. For
example the (sequential) programs used in the specification
of InputStream and OutputStream are translated into
action systems that use labels to mimic the flow of control.

Deduction units encapsulate data that are relevant for de-
duction, like axioms, proof obligations, lemmata, simplifier
rules, and (partial) proofs. Proof generation as described be-
low is always done within the local context of a deduction
unit. The structure of the development graph is mirrored in
the deduction component in the sense that units have access
to other units according to the links given by the graph. For
example, a proof about a combined state-based system can
be conducted in a way that the essential lemmata are proven
local the the units corresponding to the components of the
system and then exported to the node corresponding to the
entire system where they are combined to the final result.
Proof obligations as well as the logical form of specifica-
tions that can be viewed as their semantics are generated
by the system upon the first invocation or later incremental
changes. Deduction units are stored in a separate repository
in a form that is close to the internal representation of the
theorem prover.

Carrying out the deductive work local to units that corre-
spond to parts of the specification is of great advantage for
an efficient management of change. If parts of a large spec-
ification are changed after some deductive work has already
been done the correctness management detects those units
that are affected by the change. It also supports the user in
reestablishing a consistent state of the development. In par-
ticular existing (but invalid) proofs can be used to generate
new ones. In addition to this global correctness manage-
ment there is a bookkeeping mechanism for local lemma-
bases that detects circularities in the dependency graph. As
mentioned above there are particular techniques (the orga-
nization of lemma bases into levels) for the treatment of as-
sumptions.

Deductive Support
Formal developments give rise to various proof obligations.
We have, for instance, to verify that the formal requirement
specification satisfies a given security policy or that an im-
plementation is indeed a refinement of the given requirement
specification. Specification and verification phases are inter-
twined. Since failed proofs may reveal problematic or even
erroneous specification parts, verification plays an important
part as a formal validation of abstract (i.e. non-executable)
specifications.

During a formal development in an industrial setting, hun-
dreds or even thousands of proof obligations arise and each
of these obligations has to be verified in order to complete
the formal development. As a result, we have to be able to
prove somehow each particular proof obligation (provided it
is valid). In an industrial setting, we can make the observa-
tions that on one hand the arising proofs are too complex to
be done fully automatically. On the other hand, the proofs
are too longish to be done by hand. Thus there is a need for
an integrated approach of interactive (i.e. user guided) and
automated (i.e. machine guided) theorem proving.

As an overall goal of the deductive support, we have to
minimize the time, a proof engineer has to spent in verifying
all these proof obligations. Notice, that this issue does not
necessarily mean that we aim at the highest possible degree
of automation as this may result in longish attempts to prove
unprovable subproblems. In contrast, VSE aims at a more
sophisticated interaction between the machine and its human
supervisor. On a strategic level user and machine have to
interact in both directions. On the one hand the user acts as
an “intelligent” heuristic to be used by the machine and on
the other hand the machine provides a variety of high-level
strategies to manipulate its behavior. Both, machine and user
have to agree on a common strategic language to tackle the
arising proof obligations.

Modularity is a key issue in VSE as it is the most essential
measure to reduce complexity of specifications and arising
proof obligations. Similar to the B-tool (Abrial 1991), the
deductive process is done within a structured specification,
represented by the development graph in VSE. Proof obliga-
tions are always tackled locally to a specific deductive unit.
Thus the amount of axioms, available in the proof process,
is reduced to the locally visible part of the overall specifica-
tion.

To support different paradigms of programming, VSE
provides a variety of different logics. For instance Dynamic
Logic is used to verify properties of sequential programs
while a temporal logic of actions (Lamport 1994b) forms
the basis to reason about concurrent programs. Unlike sys-
tems like ISABELLE, VSE does not provide a general logi-
cal framework with some generic proof support. In contrast,
VSE aims at an optimized proof support for the logics under
consideration (i.e. DL, TLA, and FOL) and incorporates lots
of logic specific knowledge into the proof engine.

Logic Engine

In order to provide a uniform framework for the various
logics under consideration, VSE is based on corresponding

sequent calculi (Gentzen 1935). Proofs and also proof at-
tempts are explicitly represented into (partial) proof trees.
Analytic proof search allows us to decompose complex
proof obligations by application of calculus rules in a struc-
ture preserving way, extending the partial proof tree. Step
by step, the theorem under consideration is reduced into
“smaller” subproblems by the application of calculus rules.
It is well-known that in classical logic the sequent calculus
has several drawbacks compared to machine-oriented calculi
like resolution or tableau. In order to apply specific calcu-
lus rules, we sometimes have to guess appropriate instantia-
tions of the rules to push the proof further. Machine-oriented
calculi try to avoid such a situation by a least-commitment
strategy. VSE incorporates various techniques on top of the
sequent calculus to imitate such strategies.

The first source of in-efficency is the removal of 9-
quantifiers in Gentzen’s calculus as it requires the selec-
tion of an appropriate instantiation. VSE introduces meta-
variables as placeholder for these guesses and uses unifica-
tion (instead of matching) for rule application. Thus, these
meta-variables are more and more constrained by the ongo-
ing proof. To keep track of the Eigenvariable condition, VSE
uses the concept of skolem-terms which reduce this Eigen-
variable condition to an occur-check problem in unification.

The next source of inefficiency is related to the problem
of finding an appropriate sequence in which quantifiers of a
sequence have to be eliminated. Since quantifier rules are
usually not permutive, finding the correct order may be cru-
cial for finding the overall proof. Borrowing ideas from the
resolution calculus, VSE provides a calculus rule (Autex-
ier, Mantel, & Stephan 1998) for a simultaneous elimination
of several quantifiers. This rule also minimizes the number
of arguments of skolem functions, as skolem-terms do not
depend on the meta-variables of other formulas.

As another example consider the contraction rule which
does not permute with the introduction of meta-variables.
Thus, VSE provides so-called copy-schemata which allows
one to postpone guessing the appropriate number of copies
beforehand. Similar to ISABELLE’s use of �-terms to en-
capsulate local variables, a copy-schema also restricts the
scope of meta-variables to specific part of the sequent. Any
copy of this scheme will result in a renaming of the locally
bind meta-variables.

Since the complexity of arising proof obligations can of-
ten be reduced by applying given definitions as simplifica-
tion rules, there is a need to modify the internal structure of
a proof obligation. In order to simulate paramodulation-like
deduction, VSE provides composed proof rules which are
based on the CUT-rule.

Simplification

In formal methods, simplification techniques are indispens-
able to reduce the size and complexity of arising proof
obligations. VSE-SL provides various specification con-
cepts which support an automatic generation of simplifica-
tion rules. In many cases these concepts allow for the def-
inition of “executable” programs within the various logics
supported by VSE.

BASIC TList
PARAMS TElement
List = nil WITH isEmpty |
cons(first : element,

rest : list) WITH isNotEmpty
BASICEND

Figure 8: Specification of TList

On predicate logical level functions and predicates can
be defined in an algorithmic way (cf. for instance, knows
or learns in Figure 5). On one hand such a algorithm is
translated into a set of conditional equations or equivalences.
On the other hand the system checks the termination of the
denoted algorithm and, in case it is successful, generates a
set of simplification rules which mimics a symbolic execu-
tion of this program.

Dynamic Logic incorporates an abstract programming
language. Means for an symbolic execution are encoded
into specific calculus rules dealing with the basic constructs
of this language. In VSE special tactics are available which
imitate also the symbolic execution of such programs and —
in combination with fix-point induction — provide a power-
ful mechanism to prove properties about programs (Heisel,
Reif, & Stephan 1986).

For the specification of transitions in concurrent pro-
grams, VSE provides a pseudo-programming language.
Transition specifications (cf. Figures 6,7 for examples),
which are written in this language, are automatically trans-
lated into temporal logical formulas using an explicit rep-
resentation of an program counter. Again, simplification of
various proof obligations are available which make use of
the specific knowledge about the behavior of the program
counter.

Besides the automatic generation of simplification rules,
VSE allows the user to define its own simplification routine
by specifying a set of simplification rules. While the user is
responsible to ensure the termination of the arising simpli-
fication procedure, the soundness of the each rule has to be
verified inside the system.

VSE supports also built-in theories like integers or natural
numbers by providing theory-specific (decision) procedures.
VSE incorporates a decision procedure for linear arithmetic
which is similar to the approach presented by Boyer and
Moore (Boyer & Moore 1979).

Induction

Specifying generated datatypes give rise to the use of in-
duction principles when verifying properties about these
datatypes. The notion of generatedness in a model-
theoretical view corresponds to induction axioms in a proof-
theoretical view. Thus, defining an abstract datatype TList
in Figure 8 as being generated results in providing an struc-
tural induction scheme

((nil) ^ 8X : TList 	(rest(X)) ! 	(X))

! 8X : TList 	(X)

as part of the axiomatization.1

Inductive reasoning introduces additional search control
problems to those already present in first-order theorem
proving. The need for the selection of an appropriate induc-
tion order or for the speculation of intermediate lemmata re-
sults in infinite branching points in the search space because
(technically speaking) the cut rule cannot be eliminated in
inductive theories. To overcome some of these problems,
VSE uses recursively defined functions to introduce new
well-founded orderings to the prover. As mentioned already
in the previous paragraph, each algorithmic function or pred-
icate definition is checked for termination. If the system is
able to prove its termination, the recursion scheme encoded
into the algorithm gives rise for a new (destructor stylish)
induction scheme.

When proving induction formulas, VSE make use of syn-
tactical differences between induction hypothesis and induc-
tion conclusion as additional control knowledge to guide the
proof of the induction step. The application oriented heuris-
tic, that the induction hypothesis should be used when prov-
ing the induction step, is translated into a syntactical require-
ment that in each proof step, the hypothesis should be ho-
momorphically embedded into the conclusion. Furthermore,
the underlying logics are enriched by additional annotations
to encode these embeddings to allow for a formal reasoning
on these constraints.

Tactical Theorem Proving
As mentioned before, VSE aims at an integration of interac-
tive and automatic theorem proving.

Heuristics to tackle arising proof obligations follow the
paradigm of a structured deduction which allows one to de-
compose automatically large proof obligations into simpler
tasks and to synthesize an overall proof from the arising par-
tial solutions. This enables the use of specialized methods
to solve specific problems and also eases the speculation of
lemmata needed to prove a theorem.

In VSE, the knowledge about how to tackle specific proof
situations is encoded into a bundle of individual tactics. The
accumulation of various tactics imposes an emerging func-
tionality which is able to prove complex theorems in a goal
directed way. All these tactics operate on a common rep-
resentation of the actual proof state which is reflected in a
proof tree annotated by additional tactical knowledge. Tac-
tics may prune or refine this proof tree and represent the
algorithmic part of the proof search. In VSE, proof deci-
sions can be withdrawn by backtracking steps chronologi-
cally as well as by pruning arbitrary branches of the proof
tree. The approach combines a high degree of automation
with an elaborate interactive proof engineering environment.
VSE uses annotated terms (Hutter 1997) as a framework
to maintain various planning information during an actual
proof search. They provide a simple mechanism to propa-
gate knowledge arising within the proof search. Within this
framework tactics are able to communicate their achieve-

1However, it should be noted that due to the intrinsic weakness
of mechanizable logics this axiomatization is not categorical for
infinite datatypes.

Figure 9: Development Graph

ments to following tactics and the progress of the proof is
represented by a syntactical representation of differences be-
tween the actual state and possible goal states.

User Interaction
The explicit representation of partial proofs by proof trees
allows the user to grasp the current proof state as well as the
stepwise construction of a proof. VSE follows the princi-
ple of direct manipulation (Nelson 1980; Rutkowski 1982).
Both, the formal development and and also a partial proof
are used as task objects and are continuously presented to
the user. Figure 9 shows parts of the development graph pre-
sented to the user. Context-sensitive pop up menus provide
a variety of different actions operating on the proof sketch
and, thus, corresponding to different possibilities to refine
such a sketch. The partial proof as an object of interest is
displayed so that actions which will modify the proof are
directly placed in the high-level task domain.

At each stage of the proof synthesis, the human user can
revise the proof sketch specified so far and give advice on
how to fill in the gaps. On the one hand the user should be
able to construct any possible proof within the given calcu-
lus and for example even enforce the application of a single
deduction step. On the other hand proofs should be found
almost automatically with as little user interaction as neces-
sary. Therefore, sometimes only some strategic advice by
a human user is necessary to let the system find the proof.
Thus, VSE incorporates (human-like) strategic knowledge

about proof search in order to facilitate users’ hints. Con-
versely, the intentions of the (machine-like) built-in strate-
gies have to be known by the user in order to efficiently
assist the machine in the search for a proof. The essential
means by which this contradictory mix of demands for the
system are satisfied in VSE is the notion of a proof sketch.

The representation of a proof sketch allows the user to
edit it in several ways: he may give more precise hints for
a proof sketch, which includes directives to apply a certain
rule as the next step if the system gets stuck, or to revise
hints, e.g. by advising the system to use so-called bridge
lemmas. He may add or delete subgoals, which includes the
use of lemmas within proofs, and the possibility to correct
the systems’ assumptions on intermediate steps. Finally, in
extreme cases he may even replace the whole sketch includ-
ing subgoals and hints.

Conclusion
Since it’s first release in 1994, VSE has been successfully
applied in various projects for formal program development.
Based on these experiences, it matured into a tool which of-
fers specification and verification techniques for sequential
and concurrent programming paradigms. The development
graph serves as a logical database to maintain a structured
formal development and as a graphical interface to represent
the actual state of a formal development. Various proof tech-
niques are integrated in VSE to ease the verification of aris-
ing proof obligations. Furthermore an elaborated correct-

ness management takes care of the validity of such proofs
once the specification is changed.

References
Abrial, J.-R. 1991. The B method for large software,
specification, design and coding (abstract). volume 552
of Lecture Notes in Computer Science, 398–405. Springer-
Verlag. Volume 2: Tutorials.
Astesiano, E.; Kreowski, H.-J.; and Krieg-Brückner, B.,
eds. 1999. Algebraic foundations of systems specification.
IFIP state-of-the-art reports. Berlin: Springer.
Autexier, S.; Mantel, H.; and Stephan, W. 1998. Simulta-
neous quantifier elimination. In KI’98: Advances in Artifi-
cial Intelligence. Springer LNAI 1504.
Boyer, R. S., and Moore, J. S. 1979. A Computational
Logic. Academic Press, London, England.
Gentzen, G. 1935. Untersuchungen über das logische
schließen. Mathem. Zeitschr. 39:176–210, 405–431.
Heisel, M.; Reif, W.; and Stephan, W. 1986. An interac-
tive verification system based on dynamic logic. In Pro-
ceedings of the 8th International Conference on Automated
Deduction, volume 230 of LNCS, 131–140. Springer.
Hutter, D. 1997. Colouring terms to control equational
reasoning. Journal of Automated Reasoning 18:399–442.
Kluwer-Publishers.
Lamport, L. 1994a. The temporal logic of actions.
ACM Transactions on Programming Languages and Sys-
tems 16(3).
Lamport, L. 1994b. The temporal logic of actions.
ACM Transactions on Programming Languages and Sys-
tems 16(3):872–923.
Loeckx, J.; Ehrich, H.-D.; and Wolf, M. 1996.
Specification of Abstract Data Types. Chichester;New
York;Brisbane: Teubner.
Manna, Z., and Pnueli, A. 1991. The Temporal Logic of
Reactive and Concurrent Systems. Springer.
Nelson, T. 1980. Interactive systems and the design of
virtuality. Creative Computing 6(11).
Reif, W. 1992. Correctness of generic modules. In Nerode,
and Taitslin., eds., Symposium on Logical Foundations of
Computer Science, volume 620 of LNCS. Springer.
Rutkowski, C. 1982. An introduction to the human applica-
tions standard computer interface, part 1. BYTE 7(11):291–
310.
Spivey, J. M. 1992. The Z Notation: A Reference Man-
ual. Series in Computer Science. Prentice Hall Interna-
tional, 2nd edition.

