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Abstract

With the advent of streamlined acquisition processes, such
as simulation-based acquisition, the need for superior
weapon simulation capability is critical to developing
launch and jettison envelops. Given the limited test assets
allocated to envelop development, certification agencies are
today being asked by new weapons programs to develop the
same large envelops produced 10 years ago with only 10
percent of the assets. An additional complication is that
weapon systems are becoming increasingly complex: non-
axisymmetric, unstable or nearly unstable at launch,
employed from weapons bays, employed at very high
angles of attack. Given these complexities, it is becoming
increasing common for weapons to exhibit non-linear
and/or highly coupled behavior during launch or jettison
events. For the engineer, having a system that behaves in a
non-linear fashion greatly complicates post-flight analysis.
It is critical, therefore, to have tools available that can
optimize a large number of independent variables to
produce the desired output. This paper introduces one such
tool and shows its application to sample flight test data.

Introduction

Verification of launch/jettison performance predictions
requires implementation of accurate mathematical models
of the weapon aerodynamics, the aircraft interference
flowfield contributions, the ejector performance, the flight
control system, and knowledge of the actual flight
conditions at launch. A number of parameter estimation
methods, such as maximum likelihood, linear regression,
and Kalman filter, among others, have been applied to
flight data>? to examine the fidelity of these models.
Iterative gradient-based procedures are usually invoked,
beginning with initial estimates of the parameters, to
modify the parameter estimates until convergence is
achieved. With noise included in the measurements,
uniqueness of the parameter set is not guaranteed for a
minimum error solution, since, in general, different
combinations of parameters may produce solutions having
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equivalent, least-squares differences relative to the data.
The complications introduced by including non-linear and
highly-coupled  aerodynamic  behavior into  the
optimization process make gradient-based methods even
less attractive because these complications almost
guarantee the presence of local optima. Stochastic
optimization techniques are free from the limits imposed
by gradient-based methods. Since transition rules are not
deterministic but stochastic, techniques that use probability
theory to decide which part of the solution space to sample
next have the ability to broadly sample the optimization
space of interest and develop a non-linear multi-
dimensional mapping of the optimization space. Probably
the most popular stochastic optimization scheme in use
today is genetic algorithms. Although popular for years
for control system studies (Norris and Crossley®,
McGookin®, Homaifar and McCormick“), genetic
algorithms have really not penetrated the flight test and
simulation  validation/verification = community until
recently”®.  Genetic algorithms (GAs) will not be
described in this paper, but it is important to know the type
of algorithm used. For this study an elitist Pareto GA is
used to operate on two goals (defined below). The
population size was 100, the crossover probability was
90% and the mutation rate was 0.5%. Creep mutation was
also used at a rate of 5%, meaning that 5% of the variables
could creep at any time.

Definition of Optimization Goals

In order to get a simulation to match flight test data, it is
important that the goals be properly defined. During the
separation event, whether jettison or active launch, there
are two main objectives when attempting to get a
simulation to match flight test data: minimize position
errors, minimize attitude errors. Performance estimates for
the attitude and position goals are based on determining
the root-mean-square (RMS) difference between the flight
test telemetry data and the current simulation attempt at
reproducing the flight test data.
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Interference Flow Field and Freestream
Aerodynamic Data

Rather than use actual flight test data for this study, a
conventional six-degree-of-freedom (6DOF) generated
“simulated” flight test data using defined interference flow
field and freestream aerodynamic models. There are two
major advantages to this approach. First, since this is a
process study to explore the performance of an
optimization algorithm, knowing the “right” answers if of
critical importance to evaluating the algorithm’s
performance during the solution process. Second, there
are no public-release issues involved when using
“simulated” flight test data. The “simulated” flight test
data used for this demonstration were, however, based on
real flight test experience for a real weapon system. From
this point forward, these data will be referred to as flight
test data.

The aircraft interference data was modeled as force and
moment increments which decayed exponentially to zero
after the weapon traversed 30 feet from the launch point.
The freestream aerodynamic data were statically unstable
in pitch and yaw, and neutrally stable in roll.

Ejector Model

The ejector was modeled as a force versus displacement
model that had the capability to distribute the load as
desired between the forward and aft foot of the ejector.
This type of model is very representative of actual
hardware.

Optimization Variables

There were 17 input variables to the simulation that the
genetic algorithm was forced to include in the optimization
process. The genetic algorithm also requires specification
of the maximum and minimum bounds that each value can
take, and the desired resolution of parameter. For this
study, the variables and bounds found in Table 1 were used
in the optimization process. Given these 3parameter bounds
and resolution requirements, there are 2°° possible answers

to this optimization problem.
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Table 1. Ejector, Inertial, and Freestream Aerodynamic
Factors

Minmmum
Naximuin

Vartabte

Multiplication factor
governing amount
of force applied to
forward ejector foot
aftfac Multiplication factor 0.2 1.0 0025 5
governing amount
of force applied to
aft ejector foot
roll inertia 0.9 1.1 002 4
multiplier
yinerfac  pitch inertia 0.9 1.1 002 4
multiplier
yaw inertia 0.9 1.1 0.02 4
multiplier
caoff freestream axial 0.1 0.1 0.01 5
force coefficient
offset (f.c.0)
cyoff freestreamside fco -02 02 0.01 6
czoff freestream vertical 02 02 0.01 6
f.c.o.
cmoff freestreampitching -0.5 05 002 6
moment coefficient
offset (m.c.0.)
cnoff freestream yawing 05 05 002 6
m.c.o.
cloff freestream rolling 05 05 002 6
m.c.o.
interference axial 025 20 005 6
force coefficient
multiplier (f.c.m.)
interference side 025 20 005 6
fem
interference vertical 025 2.0 0.05 6
fem
cmintfac interference pitching 025 2.0 005 6
moment coefficient
multiplier (m.c.m.)
interference yawing 0.25 2.0 0.05 6
m.c.m.
interferencerolling 025 2.0 005 6
m.c.m.

xinerfac

zinerfac

caintfac

cyintfac

czintfac

cnintfac

clintfac

Results

To better gauge how well the new post-flight analysis
approach works, it will be compared directly against a “hill
climbing” gradient optimization approach.  Gradient
methods have been the standard way to perform
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optimization problems such as this one for many years.
However, for highly non-linear optimization problems, the
advantages of this new approach will become readily
apparent.

Figure 1 shows the Euler pitch angle history for the hill
climber and the genetic algorithm compared to flight test
data. The hill climber obviously got stuck in a local
optima and did not compare nearly as well with the flight
test data than the genetic algorithm. Forgetting the genetic
algorithm comparison for a moment, it could be said that
the hill climber captured the right “trend”. Engineers often
talk about trend comparisons with the actual comparisons
are not as good as they would like.
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Figure 1. Euler Pitch Angle Comparison

The yaw angle history plot, Figure 2, shows much better
performance by the hill climber, however, it is still not as
good as the genetic algorithm. Both methods provide very
reasonable yaw behavior for the vehicle.
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Figure 2. Euler Yaw Angle Comparison

Figure 3 shows the roll angle comparison. The hill climber
missed the initial roll to the right and lacked overall trend
performance. The genetic algorithm mimicked the flight
test data very well. Even the fairly complex roll motion
(right-left-right) is captured nearly exactly.
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Figure 3. Euler Roll Angle Comparison

The trajectory of the vehicle was captured very well by the
genetic algorithm. The downrange comparison (Figure 4)
shows that either method works well, but since downrange
is typically the least important trajectory direction for
safety of flight it is best to look at lateral and vertical
vehicle movement relative to the launch point.
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Figure 4. Downrange Comparison

In the altitude and crossrange histories (Figure 5 and
Figure 6) the strength of the genetic algorithm becomes
readily apparent. Both lateral and vertical vehicle motion
is captured nearly perfectly by the genetic algorithm. The
hill climber actually performed fairly well, capturing both
trends and magnitudes reasonably, but when compared to
the genetic algorithm the hill climber does not look very
good.
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The gains evidenced by the genetic algorithm are not,
however, without cost. The hill climber found its answer
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Figure 5. Crossrange Comparison
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Figure 6. Altitude Comparison

in roughly 500 simulation runs (roughly 2 hours of CPU
time). The genetic algorithm answer was generated in
50,000 simulation runs (500 generations with 100
members per generation).

A natural question to ask at this point is: what kind of
parameter values did the two optimization approaches
find?

Figure 7 shows the values found for each parameter
compared to the “baseline” or truth model. One of the
most noticeable differences is also one of the most
important for a separation event: the ejector forces. The
genetic algorithm found nearly perfect values for the
ejector force factors. The hill climber had difficulty
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finding reasonable values.  Both methods missed the
freestream axial force coefficient offset and the hill
climber missed the “normal” force coefficient badly. The
performance of each method for the freestream moment
coefficient offsets was mixed. Both methods missed the
“true” negative pitching moment offset. The genetic
algorithm was closest on the yawing moment offset, and
the hill climber was nearly perfect on the rolling moment
offset. It is interesting to note that although the hill
climber worked so well in finding the rolling moment
coefficient offset, the roll angle performance of the hill
climber was not good (recall Figure 3). For strongly
coupled yaw-roll behavior, it is necessary to find
reasonable parameter values in more than one variable to
capture complex motion.

The interference flow field contributions to the vehicle
motion show generally better performance by the genetic
algorithm when compared to the hill climber. Most
noticeable is the “normal” force contribution difference,
where the hill climber performed poorly. The genetic
algorithm worked much better than the hill climber in
pitching and yawing moment coefficients. The hill
climber was closer to the “truth” model than the genetic
algorithm for the rolling moment contribution. The hill
climber worked better than the genetic algorithm in both
the freestream and interference rolling moment
contributions, but still the genetic algorithm worked better
in overall roll motion. It is possible that the genetic
algorithm’s underestimation of the freestream rolling
moment coefficient contribution could have been
compensated by the overprediction of the interference flow
field’s contribution.
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Finally, the inertia factors found by both methods were
close to the “truth” model.

It is interesting that there is such a dramatic difference in
vehicle motion given the genetic factors versus the hill
climber factors. Yet for complex aerodynamics, and given
a vehicle that is unstable at launch, differences early in a
trajectory can dramatically influence motion a second after
launch. It is also interesting that some of the genetic
algorithm factors can be in error significantly (like
interference flow field rolling moment coefficient factor)
and yet the overall vehicle motion is captured nearly
perfectly. This would indicate that many parameter
combinations are capable of producing reasonable
trajectories. For a complex non-linear aerodynamic
optimization problem this should be the expected result.

Conclusions

The genetic algorithm is a dramatic improvement over the
popular hill climbing approach, but the parameter values it
obtains can still be in error. There is a possibility that
parameter combinations can compensate somewhat for each
other, leading to finding a “good” local optima rather than
the global optima. Given the way a genetic algorithm
operates, it is inevitable that more generations would have
eventually produced the “global” optima. But at what cost?
The .solution found by the genetic algorithm in 500
generations worked well for each of the six degrees of
freedom, with parameter values that are not unreasonable for
a flight test program. Were this a real flight test
comparison, such good agreement between the simulation
and the flight test data would be sufficient to proceed with
future missions with increased confidence. The hill climber
results, although generally capturing the correct trends,
would not inspire mearly as much confidence in the
simulation.
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