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Abstract
As airframe become more and more complex, and are called
upon to perform increasingly stre~sful maneuvers, autopilots
must be robust enough to adequately stabilize the airframe in
the highly non-linear, strongly cross-coupled environments.
Classic autopilot design can achieve stability throughout the
flight envelope, but generally lack robustness for design and
environmental ehange.~. Guidance and control routines
composed of a neural net architecture offer a promising ability
to process multiple inputs, generate the appropriate outputs, and
provide greater robustness. However, difficulty can arise in the
training proce,~ of the neural nets. In the present study, a feed-
forward neural net wa~ used for the guidance and control
routine.~ on typical airframe.~. The neural nets were trained
through genetic algorithms. The work attempt~ to model the
biological process of the "’thinking" aspect of the airframe.~ by
the u~ of a neural nets trained through natural ~lection a~ put
forth in the Theory of Evolution. The pre~nt study produced
an autopilot that learned to control it~ rates and maneuver (with
a full six degree.~-of-freedom) across an arena to a target.

Introduction
Aircraft and missile autopilots are becoming increasingly
complex as the airframes are required to perform extreme
maneuvers. Generally. the autopilots on current airframes
employ a closed-loop architecture, feeding back the critical
positions and rates required to maintain control. During
extreme maneuvers, the aerodynamics, and subsequently the
airframe response, becomes increasingly non-linear. Cross-
coupling between the channels becomes significant, and
classic autopilot design techniques fail in their ability to
optimize the autopilot.

Researchers~~ have attempted to address the highly
coupled autopilot issues by replacing the classic autopilot
design with a neural net. The net can allow for full cross
coupling between channels while maintaining stable flight
mode. The apparent robustness of a neural net makes its
application to flight control systems appealing. However, it
is difficult to verify its stability throughout the flight regime.

Neural nets require training. During the training process
the weights of the neural net are adjusted to achieve a
particular set of outputs for a given set of inputs. Generally,
this is accomplished by adjusting the weights of the net to
match the outputs with the inputs for an existing dataset. It
is then desired that the net will interpolate and extrapolate
from the training dataset to more general situations. An
alternate method for training the neural net is to adjust its
weights by attempting to realize a particular goal for the
system. In this case, the exact outputs for a set of inputs are
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not known. However, the entire system is encouraged to
achieve a specific goal or set of goals. It is expected that
this technique is less efficient. However, it is often the case
of complex systems that the precise outputs for a set of
inputs are not known and are therefore unavailable for the
training process. The training of the neural net through the
encouraging of specific goals strongly lends itself to the
implementation of genetic algorithms.

The present analysis attempted to strongly model the
processes of nature (according to Darwin’s evolution theory)
where the design of the flight control neural net is created and
proved by pursuing a set of goals in a arena environment. For
this study a population of geometrically similar aircraft was
examined. All members of the population had the exact same
size, geometry, mass properties, aerodynamic properties, and
propulsion system. The "brains" of each aircraft is a neural
net, which will position the control surfaces and throttle
setting. The only differences between the aircraft are the
weights of the neural nets, which were determined through a
genetic algorithm.

The Arena
Each aircraft must fly through a tournament arena. Figure 1
shows a typical formation of an arena. The fiat green plane
represents the ground. Above and penetrating the ground is
a system of (red) spheres. The spheres represent obstacles
to reaching the goal, which is the single black hemi-sphere
at ground level. The arena has dimensions of 132,000 ft by
132,000 ft along the ground. Each aircraft starts on the left-
most side of the arena as shown in Fig. 1. Its initial altitude
is a random value between !,000 ft and 15,000 ft above the
ground level, and it is in the middle 50% of the left side
starting plane. There are a random number of obstacles
from 3 to 30. The obstacles are positioned randomly within
the arena at center-point altitudes from ground level to

Figure 1. Typical Arena for a Population Member
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15,000 ft. The radius of the obstacles varies randomly from
1,000 ft to 10,000 ft. The target is randomly located at least
90% across the arena.

Each aircraft sees a different arena than all other aircraft.
By the luck of the draw, some aircraft fly through an arena
with relatively few and/or small obstacles, while others
obtain obstacle intense arena and perhaps a low starting
altitude. The desire in continuously modifying the arena is
to obtain a guidanceJautopilot, which not only will navigate
through a particular arena, but will learn to avoid all
obstacles in any arena.

The Neural Net
For this application a relatively simplistic neural net was
used to replace the typical guidance and control routines.
Figure 2 shows a general construction of the feed-forward
neural net.

Typical autopilot and guidance algorithms feedback
multiple parameters to control and maneuver the vehicle, it
is felt that these parameters fall into three categories, those
being:

¯ Attitude Control
¯ Flight Stabilization
¯ Maneuvering Guidance

The parameters associated with each of these categories are
¯ Attitude Control - Angle of Attack a; Angle of

Sideslip t, Flight Mach number M, Altitude z
¯ Flight Stabilization - Roll, Pitch, and Yaw Angular

Body Rates, p, q, and r, respectively
¯ Maneuvering Guidance - Obstacle Proximity

Function 00, and the Normalize Vector Pointing to

the Target, ~" =x[+yj+zsk, where i’, j, and

/~ are the usual Cartesian unit vectors and xg, Ys,
and zs of the components of the i~ vector, which
points from the airframe to the target.

It was felt that all parameters in a category should enter
the net at a given level, but not all of the categories should
enter at the same level. For example, the Attitude Control
inputs could enter at the second level, while the Flight
Stabilization and Maneuvering Guidance inputs might both
enter at the first level. Since the best positioning of the
entry of the inputs is not known in advance, it was decided
to let the genetic algorithm determine the appropriate entry
point.

There may be a large number of obstacles. Feeding in
the position and size of each obstacle into the net would lead
to an unacceptably large number of inputs. Rather, it was
decided to replace the position/size information of the
obstacles with a single function, which is

1 (1)
= .,.(y,. + _z,)"

where xcs, Yes, and z,c~ are the current inertial coordinates of
the airframe’s center of gravity, Nob is the number of

p"

r’.’

"/~" Aj,~ A:.~ .d.,.~ ,.’1:u ,4~.~ A,¢,.,

Figure 2. Schematic of the Neural Net Used to Control
the Airframes.

obstacles, x~, y~, and z; defines the location for the t4h
obstacle, and R~ is the radius of the t~h obstacle. The obstacle
function does not impart precise information on the location
of each obstacle to the neural net, but it does approach
infinity as the airframe nears an obstacle.

Part of the "genetics" of the routine is to determine the
best position for the entering of the various types of inputs.
The interior nodes are the typical summation points of the
lines into each node. The outputs of the neural net are 8,,
8,,, ~., and ~, which respectively correspond to the elevator,
aileron, rudder deflections, and the throttle setting. The
topology of the neural net makes each output a linear
combination of the input.

The neural net required a large number of weighting
constants. In an effort to reduce the parameters of the
problem, the net was constructed to have three interior
layers with only two nodes each.

The angles and angular rates enter the net in terms of
radians and radians per second, respectively. The input
altitude z, which is calculated in units of feet is divided by
100,000. The target pointing vector is a normalized vector
continuously pointing from the aircraft center of gravity to
the target.
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Thus, all of the inputs into the net are on the order of
unity (except the Obstacle Proximity Function ¢b, which can
tend to infinity). The output (where the angles are also
measured in radians) of the net are also expected to be on
the order of unity. The throttle setting ¢~ is a normalized
quantity where ¢~ = 0.0 corresponds to motor off, and ¢~ =
1.0 implies full throttle.

The Genetic Algorithm
All of the airframes examined had the same geometry,
aerodynamics, propulsion, and mass properties. The only
difference between them was the weighting of the
connections of the neural net. These weighting constants
became the genes on the chromosomes for the genetic
algorithm searching technique.

Figure 3 shows the process in which the chromosomes
are created. An upper and lower bound is specified for each
parameter, as well as a resolution factor. The genetic
algorithm routine determines the binary coding of the
parameter. All of the individual binary values (the genes) 
the parameters are concatenated together to form a single
chromosome.

in the ease of this study, the minimum value allowed for
the weighting constants was -i .0 and the maximum was 1.0.

ILIIIL2~IL3 A IA,aiA2,~ A~a A’t A’a ... ID~.,~ Variable
r " ’ " Naln©

2 I t 2 ~..~1-...~.i...,o I-~.o...l.,rm1.~ ".7..1..a3~...!~ ¯ Variable¯ Value

.. mm 0.0 ’ n** m* 1 .o~ *,. .J...!’!~..i 4 Binary0to I ®1 °’*. :..~......I ...........1 ................~ ........i.:::. Represmtation
I

o,Nmo~m,o.~..o,*.oL,o~o4 ¯ Chromosome
Figure 3. Process for Creating the Chromosomes

The resolution for each was approximately 0.15. The
particular genetic algorithm has been documented in Refs. 7
and 8.

The Airframes
The aerodynamic and mass properties used in this study
were approximately those of the general aviation airplane,
NAVION, shown schematically in Fig. 4. Linear
aerodynamics were generally assumed. The only non-linear
aerodynamic terms were the total lift and associated drag. It
was required to limit the lifting ability of the airframe, so
that it would not ever increase its angle of attack to achieve
better and better lift.

Thus, a rough estimation of the stall and post-stall
behavior of the wings and its effect on the drag was made.
The steady, no control surface deflection, lift was fit with a
third order polynomial. The typical lift induced drag was
used up to the stall angle. However, in the post-stall regime,
both the lift and drag coefficients were assigned a sinusoidal
component of a total normal force.

Mass Prope~es
Weight ffi 2,750 lbf

L ffi to4s ,d~ it’
t, = 3oo0 stug n’
-7," 3530 slug
I. ffi o slug te

Reference Cmomotry
A,cffi 184 t~
L,,, = s.7 e
L~ ffi 33.4 \

Figure 4. Schematic of the General Aviation Aircraft

and

The basic aerodynamics were of the form

CL =fcL(~t)+C~’~+CtS, (3a)

co = f:o(, )+co.141+co.la.l+c,,.la.I (3b)

c, = c,,,# + c, a, (3c)

C, =C,,fl+CI, p+Ct,~ +C,,,a,, +C,,~ a, (3d)

c,. =c.~+%~+c.,,q+c..a, (3e)

c. = c,.,p+ c..p+ c,. ~ + c. 6. + c,. a. (30
where CL, G), and Cr are the lift, drag, and side force
coefficients, respectively, the G, C,., and C. are the rolling
pitching, and yawing moments, respectively. A bar over a
rate variable indicated that it is non-dimensionalized by
multiplying by its reference length and dividing by twice the
upstream velocity. Each coefficient on the right hand side
of Eqs. (3a-f) was constant and defined in Ref. 9. The
single exception was the variable C,p, which apparently has

a sign error in Ref. 9 and will be discussed further later.

The angle of attack dependence for C~ was defined as

~0.817cosat ot + ~tt..o <-16"

fc,.(a~) = 5"65(et-et’.-o)+5"O2(at-a’.=o): - I a+etL-Ol < 16" (4a)
27.9 l(at- atL.ff

1.227COSOt 16" < at + a’~.=o

and for the Co,

[l~0.817sina

fen(at) [ i.227sinot=to oo6+ool5c, 

where etL_-o is the zero lift angle of attack.

(4b)
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The propulsion systems on the airframes have maximum
thrust levels, and fuel consumption consistent with a
propeller driven general aviation airplane.

Results

A population size of 200 members was chosen. The
weighting constants of each member were defined by their
genetics. Originally, the genes were randomly determined.
The original single criterion in selecting the superior
members of the population was their final distance to the
target. Since the original weighting constants were
randomly generated, the first generation did not perform
very well. Figure 5 shows the trajectory (the blue three-
dimensional curve) of a typical member of the first
generation.

Figure 5. Trajectory of a Typical Member of the First
Generation

The original analysis continued to select superior
population members based solely on their ability to impact
the ground near the target. Of course, no information was
given to the aircraft that it was desired to avoid the ground,
avoid the obstacles and approach the target. However.
being allowed to produce offspring was the reward of those
that did.

Following the first 100 generation, it was observed that
the superior aircraft were the ones that were lucky enough to
start from the highest altitude, set the control surfaces hard
over, and tumble more or less ballistically as far as possible
across the arena. It was likely, that in time a superior set of
aircraft would evolve to a more elegant solution. However,
it was deemed that some encouragement could also be
provided. A second goal was established which rewarded
population members that controlled their angular rates. The
following function was established,

7

f,,, =l!~[p2+q2+r2dt
(8)

where f,.,,,, is the average rate function, t is time, and T is the
total time of the flight. In addition, to the goal of reaching

the target, successful population members minimize thef~
function.

Clearly, some maneuvering is desirable to negotiate to
the target, and avoid obstacles. However, as an instructional
tool. It was felt that population members that could control
their attitude should be encouraged first with reaching the
target as a secondary goal. Once the population evolved to
the point where it could control its attitude, then the goal of
reaching the target could be reemphasized.

Figure 6 shows the best performing member of the
population after 100 generations, where the minimization of
f~at, was strongly emphasized and reaching the target was the
secondary goal. The airframes learned rather quickly to sets
their control surfaces to stop the tumbling. Further, the
active control system damped out the phugiod oscillation
quicker than the just stick-fixed aerodynamic damping. It
was at this point that a problem in the aerodynamic model of

Figure 6. Trajectory of the Best Performer after 100
Generations of Encouraging Rate Control

the six Degree-of-Freedom (6-DOF) simulation was
discovered. The aerodynamics associated with the
airframes were taken from Ref. 9, and modified only the lift
at drag at the high angles of attack. The remaining
aerodynamic coefficients were linear, and the values found
in Ref. 9. The derivative of the yawing moment with
respect to the angle of sideslip C,,~ was give as -0.071 in

Ref. 9, which has an apparent sign error. The negative sign
in the coefficient makes the airframe statically unstable in
yaw. The remarkable thing is the neural net autopilot was
able to stabilize the airframe in spite of its static instability.

Even though the neural net was able to control the
unstable airframe, it was felt that that proper aerodynamics
should be examined. Thus, the sign was changed on the

C,,p, and the analysis started again from the first generation.

With the correct aerodynamics, the results after 100
generations looked quite similar to those shown in Figure 6.
Since the airframes had largely learned to control their rates,
the emphasis was changed to encourage close proximity to
the target, and the rate control was changed to a secondary
objective.
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The trajectory shown in Fig. 7 is that of the best
performer after 300 generations. The airframes had largely
retained their ability and desire to control their rates.
However, all successful population members learned to
maintain a zero command for rudder and aileron deflections.
They learned how to adjust their elevator and throttle to fly
across the arena to reach approximately the correct
longitudinal position of the target, but no corrections were
made for lateral adjustments.

Such was the status of the airframes for a large number
of generations. The local optimization of commanding no
lateral motion reigned superior to other tested options. The
airframes got somewhat better at finding the correct
longitudinal location, and would learn to nose over if flying
to far, but no success was found in commanding aileron
and/or rudder. Finally, at approximately the 1,600th

generation, successful airframes emerged that command
lateral maneuvers.

....... ..............
Figure 8. Trajectory of the Best Performer after 2,000

Generations.

Figures 8 and 9 show the trajectory of the best performer
after 2000 generations. The best performers learned to
~rovide an early course correction to points towards the

Figure 9. End Game Trajectory of the Best
Performer after 2,000 Generations.

target, and upon flying over the target, they learned to nose
over.

The airframes have not seemed to learn to avoid
obstacles. The successful airframes are those that obtain an
arena that presents no obstacles between the starting
position and the target. It will likely require a large number
of additional generations to fine-tune the targeting and
obstacle avoidance of the neural net.

The combination of 40 weighting constants (each having
a possibility of 16 values) and three input position constants
(each having a possibility of 3 values) produces a total 
3.94 x 1049 different configuration to the neural net. After
2,000 generations with 200 members on the population,
only 400,000 different combinations have been examined.
The genetic algorithm has produced rather remarkable
results, considering the small amount of the sample space
that has been examined. Clearly, further refining is required
to find the more optimal solution.

Figures 10 and 11 respectively show the convergence
histories for the target miss distance and the rate function of
the population versus the generation. Shown on both charts
is the population average performance as well as the best
performer of the population. Results for each generation
were computed for the first 300 generations, and then for
every 100 generations after that.

Note in Fig. 10 that there is a significant initial drop off
in the miss distance of both the best performer and the
population average. The initial drop is due to the airframes
learning to control their rates as shown in Fig. 11. It can be
seen in Fig. I I that at the 100th generation the primary
objective was changed to encourage close approaches to the
target. Even though the rate function begins to increase
after 100 generations, the miss distance is not significantly
affected.

There is a small decrease in miss distance (average and
best) following the 300th generation. The decrease is largely
due to a learning of the airframes to nose over if they are
extending too far down range. Finally, after the 1,600th

generation, the best performers start learning to maneuver
toward the target. It is noted that the 1,900th generation
loses some performance, but this was due to obstacle
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Figure 10. Miss Distance from Target Convergence
History.

~lacernent between the airframe and the target for the best
~erformers at that generation.

The trends of the average population members for both
the miss distance and the rate function are very encouraging.
With continued execution of the genetic algorithm, better
solutions are likely.

Sunnnary

Modem autopilot and guidance routines must generally deal
with significant cross coupling when called upon to perform
multiple objectives and meet several goals. Guidance and
control routines composed of a neural net architecture offer a
promising ability to process multiple inputs, generate the
appropriate outputs, and provide greater robustness in dealing
with new situations. However, difficulty can arise in the
training process of the neural nets.

In an effort to mimic processes associated with Darwin’s
Theory of Evolution, a genetic algorithm was employed to
facilitate the learning of the neural net. A population of
similar aircraft was generated. Each aircraft had the same
aerodynamics, configuration, mass properties, and propulsion
system. The aircraft’s guidance and control algorithms were
composed of a neural net receiving flight attitude, position
and rate information, outputting control surface deflections
and throttle setting. The weights of the neural net were the
genes associated with the genetic algorithm search, which
were passed on and modified in subsequent generations. The

genetic algorithm statistically preferences the best performers
to reproduce offspring and pass on their general
characteristics to the next generation.

In the present study, the best performers were the aircraft
that could control their angular rates and/or impact the ground
within the closest distance from an arbitrarily placed target,
while negotiating through an arena of spherical obstacles.
After 2,000 generations, the best performers learn to control
their rates very well, and could set their throttle and elevator
to damp the phugoid motion and traverse the distance of the
arena. Further, they developed a general notion to deflect
rudder and/or aileron early in their trajectory to maneuver
toward the target, and nose over onto the target when
approaching too high. However, little learning to avoid
obstacles had occurred.

Further generations are required to optimize the solution.
The sample space of problem is so large that the genetic
algorithm continues to find local extrema to the guidance and
control, but continues to search for the global optima. From
the work thus far, it appears that a neural net can be trained to
meet the desired goals. However, it is likely to require tens of
thousands of generations to reach that point. Although the
computational expense is significant, the resulting guidance
and control routine should be able to avoid arbitrary obstacles
and guide to a randomly located target, which will have
tremendous applications for weapon system implementation
in urban (cluttered) environements.
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