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Abstract
Future conflicts may involve composite striker packages
composed of manned and unmanned air vehicles (UAVs)
supervised by mission controllers. Since situation awareness
(SA) contributes to and is a crucial part of mission success,
significant effort is now being placed on developing new
technologies that have the potential of increasing SA for the
mission controller. This paper describes the design and
development of an on-line situation assessment model for
unmanned air vehicles that is based on human behavior
representation (HBR). The essential feature of this model 
its organization around the skilled human’s situation
assessment behavior in a complex multi-task environment.
Simulation results are presented for a SEAD mission.

I. Introduction

Unmanned aerial vehicles (UAVs) have been in the 
Air Force arsenal since the raid- to late 1950s. Recently,
there has been a renewed interest in UAV technology and
roles. For example, in 1998 the USAF and DARPA jointly
began a program to build and test an Uninhabited Combat
Aerial Vehicle (UCAV). Designated the X-45, the goal 
this program is to demonstrate the technical feasibility for a
UCAV system to effectively and affordably prosecute the
21st century Suppression of Enemy Air Defense (SEAD)
mission within the emerging global command and control
architecture. As envisioned by DARPA, an operational
vehicle of this type would be available in the post-2010
time flame and would be used extensively during the h/gh-
threat, early phase of a campaign.

To reduce costs, a single mission controller would
receive and process data from multiple UCAVs as well as
other national assets (e.g. satellites and AWACS) and
simultaneously direct (supervise) the flight team (Kandebo,
2000). Although this concept of operations may reduce
costs, it also will create a number of new challenges for
maintaining situation awareness (SA) for human pilots and
mission controllers. For example, from a control
perspective it will be difficult for a mission controller to
maintain SA for each UCAV as well as for the overall
mission. This is due to information overload caused by the
need to quickly and accurately monitor large amounts of
data under time-stressing conditions as well as the need to
understand the autonomous capabilities of the UCAVs.

From past experience with manned air warfare scenarios,
it is well known that fighter pilots make dynandc decisions
under high uncertainty and high time pressure. Under such
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conditions, numerous empirical studies (Stiffier, 1988) and
pilots’ own accounts (Singleton, 1990) indicate that the
most critical component of decision-maic/ng is SA,
obtained via the rapid construction of tactical mental
models that best capture or explain the accumulating
evidence obtained through continual observation of the
tactical environment. Once a mental picture is developed,
decisions are automatically driven by the selection of pre-
defined procedures associated with the recognized tactical
situation. Such SA-centered decision-making, sometimes
called recognition-primed decision-m_aking (Klein, 1989a),
has been widely accepted as the most appropriate
representation of actual human decision-making in high
tempo, high value situations (Klein, 1989a & Endsley,
1995b).

For UCAV or UAV-based missions, the importance of
accurate and timely SA will be no less demanding than
human-only based missions. In fact, a number of new
challenges for maintaining SA exist, including: 1)
development of autonomous SA algorithms for the
unmanned vehicles to drive their decision logic, 2) fusion
of each strike package element’s SA information at the
mission controller’s workstation (or cockpit), to create 
global picture of the battlespace, and 3) interpretation of
the fused SA information in a manner that supports optimal
mission planning, re-routing, targeting, and threat evasion.
The objective of the current research is to develop an on-
line SA model to alleviate some of the aforementioned
problems. This paper describes the design and development
of this model

2. Background

This section provides background material that
supported the modeling and development effort. Section
2.1 describes the Rasmussen Hierarchy of human
information processing and skilled behavior, which is a
conceptual framework for analyzing different types of
human skills. Section 2.2 describes past research in the area
of human decision modeling that supported the formulation
of the intelligent agent model. Finally, section 2.3 describes
SAMPLE, an in-house agent developed for SA.

2.1 Rasmussen Hierarchy of Human Behavior
Rasmussen’s three-tier model of human information

processing and skilled behavior (Rasmussen, 1981 
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1982), shown in Figure 1, provides a good unifying
theoretical framework for analysis of different human skills
that may be modeled within a real-time simulation. By
dividing skilled behavior into categories based on the
degree of automaticity, complexity, and level of cognitive
processing, this framework supports systematic skill
decomposition and measurement of individual aspects of
the overall skill on a part-task basis.

Each link in Figure 1 represents flow of information
through the human information processing apparatus.
Information flows through the system starting at the bottom
left with environmental input, and flowing upwards along
the left side of the diagram to the most complex level of
knowledge-based processing.
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Figure 1: Rasmussen Hierarchy of Human Behavior

Decisions about behaviors propagate downward through
the right side of the figure until the motor organs execute
them. Aspects of the stimuli that can be handled at the
lower levels are processed there (i.e., a cognitive
"shortcut") and only situations that require more
sophisticated processing reach the most complex
knowledge-based level. Processing is divided into three
broad categories, corresponding to activities at different
levels of complexity:

1. Knowledge-based behavior is the highest
level of complexity and is required for any
complex problem solving that has not been
fully automated. It typically involves handling
new or unusual situations where reasoning
from first principles is requ/red. These
situations are often made more complex by
the need to engage in several parallel tasks
simultaneously.

2. Rule-based behavior is at the core of high-
performance skill. It involves well-practiced,
often highly automatized behavioral
sequences that comprise a set of compiled
situation-action pairs (i.e., rules). It 
demonstrated in situations requiring
standardized procedures. The emphasis here
is on accurate and timely situation

.

assessment, followed by the appropriate
procedural response.
Skill-based behavior involves well-practiced
sensorimotor skills that do not involve
cognitive resources, but are performed largely
automatically in response to recognized
stimuli. It is the most automated type of
behavior demonstrated by almost unconscious
performance of highly trained sensorimotor
tasks.

The Rasmussen hierarchy is a good framework for
decomposing a particular task-skill pair into constituent
skill-types, each with different processing characteristics
and requirements. Although not posed directly as a
computational representation, it does provide a good basis
from which to approach the design of an intelligent agent
for human behavioral modeling.

2.2 Human Decision-Making in Complex Task
Environments

Human performance in decision-making has been
studied extensively, primarily through empirical studies but
increasingly with computational tools. These studies span
the theoretical-to-applied specmma and cover many
domains. For example, Endsley (1995a) and Aclamx,
Tenney & Pew (1995) discuss a psychological model 
decision-making, focusing in particular on situation
awareness (SA), and the impact of particular system
characteristics on the operator workload, attention and
memory requirements, and the likelihood of errors.

Klein (1994) has studied a particular type of decision-
making predicated on the quick extraction of salient cues
from a complex environment and a mapping of these cues
to a set of procedures. Research indicates that such
Recognition-Primed Decision-making (RPD) plays a major
role in planning and it is therefore critical for decision-
aiding systems to reco~ize and support this mode of
hnman information processing. Situation-centered decision-
making has been widely accepted as the most appropriate
representation of actual human decision-making in high
tempo, high value situations (Fracker, 1990). Accordingly,
the development of appropriate human behavior
representations should be based on the development of
realistic SA models.

2.3 SAMPLE: A Computational Model for
Human Behavior Representation

Figure 2 shows the underlying architecture used to
develop an on-line SA model for unmanned vehicles.
Called SAMPLE, this architecture combines elements of
the Rasmussen Hierarohy and the Crew/System Integration
Model (CSIM) (Zacharias et al, 1981, and 1996).
Specifically, it integrates the information processing,
situation assessment, and decision-making concepts of
CSIM with the explicit delineation of skill based and rule-
based behavior of the Rasmussen Hierarchy.
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Two branches exist underneath the sensory channels and
attention allocation block. The "shortcut" between
continuous input filtering and the control channel serves
the same fimction as the skill-based branch of the
Rasmussen Hierarchy, while the path be~nnlng with
feature extraction and ending below the procedure selector
is the equivalent of the rule-based branch. Like CSIM, a
modeled behavior is that of directed attention allocation or
situation assessment.

7

Figure 2: SAMPLE Agent Model Architecture

Development of an on-line situation assessor called for
computational intelligence that integrates several enabling
technologies to implement the essential functions
performed during real-time situation assessment: event
detection, situation assessment, and decision-making. In
past efforts, e.g. Mulgund et al, 2000, we have
demonstrated the capabilities of three key technologies for
carrying out these functions: fuzzy logic, belief networks,
and expert systems.

First, Fuzzy logic (FL) is used to implement a "fi-ont-
end" event detection module. This module transforms fused
sensor data into situationally relevant semantic variables
that, as a group, define the overall tactical situation.

Next, Belief networks (BNs) (Pearl, 1988) are used 
compute situation assessment. BNs combine the detected
events with one or more structural models of the
environment, to provide a probabilistic assessment of the
situation in the presence of uncertainty, and the prediction
of expected events consistent with that situation. BNs
emulate a skilled human’s information fusion and reasoning
process in a multi-task enwr’onment and provide a
comprehensible picture of the SA problem by indicating
the dependent relationships among the high-level
(symbolic) variables and low-level (numeric) variables.
This provides a clearer view (than a low-level neural
network-based approach would, for example) of how each
individual piece of evidence affects the high-level tactical
picture.

Finally, Expert Systems are used for decision-making.
Human decision-making is modeled using a cascade of two
sub-models: a procedure selector and a procedure executor.
In tandem, these emulate a human’s rnle-based decision-
making behavior and psychomotor skills in executing a
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selected procedure. Decision-making behavior is
implemented as a production rule system that supports
selection of a procedure set that is pre-assigned to the
assessed situation specified in the human operator’s mental
model. Details of the procedure set, and its linkages to the
associated situation, are maintained in a procedural
knowledge base.

3. Application to Unmanned Vehicles

3.1 Mental Model Development

This work is an extension of prior work done by
Mulgand (1997). A SEAD mission was chosen 
demonstrate the on-line situation awareness model. The
information processing, situation assessment, and decision-
waking models required to implement the SAMPLE agent
were developed via an extensive knowledge engineering
and cognitive task analysis (CTA) effort conducted with 
experienced USAF pilot. CTA determines the mental
processes and skills required to perform a task at high
proficiency levels (Redding, 1992).

To identify the information requirements, a goal-directed
task analysis based on the methodology of Endsley (1993)
was done. The SA information requirements were defined
as those dynamic information needs associated with the
major goals or sub-goals, which a SEAD vehicle (piloted or
un-piloted) must perform. Three steps were involved in
identifying these needs. First, the major goals of the job
were established, along with the major sub-goals necessary
for meeting each of these goals. Second, the major
decisions associated with each sub-goal, that needed to be
made, were identified. And th/rd, the SA information
requirements for making these decisions and carrying out
each sub-goal were then identified. These requirements
focused not only on what data are needed, but also how that
information was integrated or combined to address each
decision.

The knowledge engineering effort yielded a network
representation for the mental model of a pilot executing a
SEAD mission. Key situation awareness variables included
vulnerability, ability of completing mission, sort plan
effectiveness, likelihood of getting hit, projected time on
station (TOS), and threat level (Hanson & Harper, 2000).
An unmanned vehicle then uses this network to obtain
human-like reasoning. In general, the network consists of a
large set of interconnected nodes, each representing a
different event detection, situation assessment, and
decision-making function. Figure 3 illustrates one of the
belief networks in the overall SA network. This BN
computes the threat level "experienced" by the unmanned
vehicle as it flies in enemy territory. Threat level
assessments drive decisions regarding which threats to
engage, when to engage a threat, and self-vulnerability.
This diagram shows that to first order, threat level causally
depends on three quantities:
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Figure 3: Example Belief Network: Threat Level Assessment

Threat Disposition and Ability to Counter are the outputs
of other belief networks not shown. Whether or not the
vehicle believes it is in a threat’s WEZ depends on three
factors: vehicle position and navigation state, the threat
location, and the type of threat, e.g. a SA-2 or SA-10.
Because this assessment is not a probabilistic inferencing
process, it cannot be represented directly with a belief
network. Instead a mathematical algorithm, based on
assumed threat parameters such as max/mum range and
maximum altitude, estimates ownship position with respect
to the WEZ. Fuzzy logic is then used to incorporate
uncertainty due to inexact values in the threat parameters
and position.

Figure 4: Bird’s Eye View of Scenario

Figure 5 show threat level assessments made for each of
the three vehicles as a function of the X and Y positions.
These values were generated by "flying" each vehicle on its
desired flight path and using onboard sensor measurements,
e.g. radar warning receivers, to obtain data needed for the
threat level belief network. The single numbers shown for
each vehicle result from converting the high, medium, and
low states into a scalar ranging from 0 (no threat) to 1 (high
threat).

3.2 Simulation Results

To demonstrate the on-line SA model, simulations were
done using a modified version of the Man-In-the-Loop Air-
to-Air System Performance Evaluation Model (MIL-
AASPEM), developed by The Boeing Company (Lawson
& Butler, 1995). MIL-AASPEM is a high-fidelity simulator
used extensively for subsystem effectiveness evaluation and
air combat tactics development. It includes capabilities for
representing multiple types of aircraft and their associated
avionics, sensor subsystems, displays, weapons and ground
players.

All trials used two UCAVs beginning roughly 60 NM
due West from the striker’s target. Figure 4 shows a birds-
eye view of the situation. The nominal UCAV flight paths
are shown in red and green. The striker flight path is shown
in blue. The UCAVs fly to station points and then fly radar
minimization arcs (shown as circles). The integrated air
defense systems (IADS) consisted of four surface-to-air
missile (SAM) sites. Max/mum WEZs for the sites are

!11-....-i .............i i i ~-~ i ~ ...... i

i..........~i i ! i i )i ! T ̄ -.¯¯-:

xkt~

Figure 5: Assessed Threat Levels (red ffi UCAV-I, green 
UCAV-2, and blue ffi Striker)

Inspection of the figure shows that at long ranges, the
perceived threat level on all vehicles is low. This is
expected since the vehicles are out of the threat WEZ. As
the vehicles approach the IADS sites, the threat levels vary
depending on the range to the threat and the aspect angle
between the vehicle velocity vector and the radar beam. For
instance, the threat level on UCAV-2 (shown in green) 
constant (see A on figure) until the vehicle nears the
perceived edges of the SAM WEZs (B). The threat level
begins to rise and fall (C) as the vehicle tries to fly 90" 
the radar beam of SAM-site 11, which increases the beam
aspect angle on SAM-site 12. The perceived threat level
drops, and then enters a cyclic pattern (D) when the vehicle
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reaches the station po/nt and begins its orbit (flying/nto
and out of the threat WEZs.

4. Snmm~y

The design and development of an HBR-hased
intelligent agent model for on-line situation assessment has
been described. This agent model uses fuzzy logic for event
detection, a probabilistic representation of human
information processing and situation assessment as the
foundation for modeling complex decision-ma~ing
behavior in multi-task environments, and expert systems
for decision-making. The agent was implemented in an on-
line situation assessor for m/ssion controllers to facilitate
situation awareness and increase controller effectiveness.
Using a SEAD mission, the utility of this agent for
modeling and calculating tactical piloting behavior for
unmanned vehicles was shown. Current research is
directed towards implementing an intelligent on-board
vehicle controller that uses the agent to make human-like
decisions and execute the mission.
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