
A Background Layer of Health Monitoring

and Error Handling for ObjectAgent

Joseph B. Mueller, Derek M. Surka, and Joy J. Lin

Princeton Satellite Systems
150 S. Washington St., Suite 201

Falls Church, Virginia 22046
{jmueller. dmsurka, jjlin } @psatellite.com

Abstract
ObjectAgent is an agent-based, message-passing software
architecture that utilizes natural language processing to
provide autonomous control to complex systems. As a form
of distributed programming, the architecture relies on agents
sharing information in order to accomplish various tasks.
Because this architecture is both flexible and
reconfigurable, it is a natural platform for implementing
artificial intelligence techniques. Crucial to the success of
such a system is its ability to detect and recover from faults,
and to monitor its internal health. A layer of software has
been added to ObjectAgent which enables the user to create
families of agents, quickly define their health monitoring
characteristics, and easily implement error detection and
recovery algorithms. The result is a layer of error handling
and health monitoring that runs seamlessly in the
background.

Introduction

The ObjectAgent system is an agent-based real-time
software architecture designed specifically for distributed,
autonomous control. During the first phase of
development, ObjectAgent was prototyped in Matlab and it
is now being ported to C++ for demonstration on a real-
time, distributed testbed and deployment on TechSat 21 in
2003.

Previous papers have addressed the basic Matlab
architecture of ObjectAgent and have described the
research into agent organizations for distributed satellite
control [Schetter 2000a] [Schetter 2000b]. Papers have
also described the basic C++ architecture [Surka 2001] as
well as the application of ObjectAgent to the TechSat 21
program [Zetocha 2000]. This paper focuses on the
recently added functionality of health monitoring and error
handling, and how these features complement organized
networks of agents. The paper is organized as follows:

¯ Overview of ObjectAgent
¯ Agent Networks
¯ Health Monitoring
¯ Error Handling
¯ Conclusion

Copyright © 2001. AAAI. All rights reserved.

Overview of ObjectAgent

ObjectAgent is an agent-based, message-passing software
architecture that utilizes natural language processing to
provide autonomous control to complex systems. Control
systems are decomposed into agents, each of which is a
multi-threaded process. Agents are used to implement all
of the software functionality and communicate via a
flexible messaging architecture. Each message has a
content field written in natural language that is used to
identify the purpose of the message and its contents.
Agents may be loaded at any time and have the capability
to configure themselves when launched, which simplifies
the process of updating flight software and removes the
complexity associated with software patches.

ObjectAgent agents are composed of skills. In Matlab,
these skills are written as m-files with a specific format.
Generally, each skill corresponds to one basic function,
has inputs and outputs, and triggers one or more actions.
These actions can include calling any other Matlab
function. The skiffs that an agent possesses determine its
complexity and functionality. However, all agents have a
number of survival skills to ensure that they can
communicate and recover from basic failures. Agent
communication takes place solely through messages; there
is no shared memory between agents. This ensures that
agents can work together even when they are not located
on the same processor.

ObjectAgent allows the user to specify the complexity of
the agents and agent organizations and does not constrain
users to a predefined notion of an agent. The user performs
the decomposition of the system into agents. This allows
greater flexibility, extensibility, upgradability, and
compatibility with existing systems. An agent can
dynamically accept new tasks and employ its skills to
accomplish those tasks. Although artificial intelligence
techniques are not built in to the ObjectAgent core, the OA
system architecture allows AI techniques to be
incorporated at any or all levels of the software. Many

AI IN AEROSPACE63

From: FLAIRS-01 Proceedings. Copyright © 2001, AAAI (www.aaai.org). All rights reserved.

tools are available to create skills. For example, the system
includes fuzzy logic, neural net, system identification,
learning control, access to Spacecraft Command
Language, expert system and fault detection tools that the
user can employ to solve his or her distributed control
problems. These techniques can even be added after the
system is in operation, which is not possible with today’s
flight systems. In addition, tools for enabling agent
organizations are included. This permits agents to control
the behavior of other agents.

Finally, special attention has been paid to developing a
system that is easy-to-use and simplifies the flight software
creation process. ObjectAgent is an integrated approach to
agent and flight software design, making extensive use of
simplified natural language and graphical user interfaces
(GUIs). This design environment not only simplifies the
agent creation process but also provides a common
interface to a number of advanced control and estimation
techniques.

The latest developments in the ObjectAgent architecture
include GUIs to develop agent networks, specify health
reports and organize a fault detection approach.
Complementing the user interfaces tools is a background
layer of communication and messaging which actually
performs the health monitoring and error handling
functions, based upon user-supplied information. This
additional architecture enables health information to be
distributed and errors to be handled in a flexible manner,
and with minimal user intervention.

Agent Networks
An agent network is a group of agents that are connected
to one another through various relationships. The behavior
of an agent network is largely determined by the skills that
they run, as well as the associated inputs and outputs of
those skills. As discussed earlier, the sharing of
information is established by conversations between
agents, where the conversations lead to the creation of task
lists. Nominally, agents can operate together in an
environment without a priori knowledge of their
relationships--they only know what they have, and what
they need.

It is desirable in some cases, however, for the designer to
establish specific relationships between agents. In these
cases, there is an intentional effort to organize the network
according to some distribution of responsibility that
translates directly into the application for which the agents
are designed. A graphical user interface has been
developed for ObjectAgent which allows the rapid
development of such networks. In this GUI, relationships
between agents are easily added or removed, and the
resulting network is displayed.

64 FLAIRS-2001

The purpose of creating a relationship is to quickly define
a general protocol of interaction. Thus, when a specific
relationship is defined between two agents, that carries
with it an expectation of how those two agents will
interact. ObjectAgent currently supports three types of
agent relationships: master, slave, and peer.

Each of these relationships maps into various attributes.
The following protocols are to be followed in
ObjectAgent:

a) Both error reports and health reports are sent to
masters and peers (others may be added)

b) Tasks may be assigned by masters, and requested
by peers.

c) Changes to interfaces may be made by masters,
and requested by peers.

Of these three protocols, only a) is currently enforced,
though b) and c) are under development.

Error and health reports will be discussed in the following
two sections. As explained earlier, agents operate by
executing tasks. An agent may dynamically change its own
task list, assign tasks to its slave agents, or request tasks of
its peer agents. The interfaces of an agent dictate how it
communicates with others. These too may changed
dynamically, with masters having more authority than
peers.

An agent network is created by assigning various
relationships between 2 or more agents. The network is
organized by assigning levels to each agent. Consider the

Level 3

Level 2

~~Level 1

Figure 1: Example of an Agent Network

network in Figure 1, which is composed of agents A - E. In
this diagram, masters are above slaves, and peers are next
to one another.

In this network, agent A is a master to both B and C, agent
C is a master to D, and D and E are peers. The level of
each agent is dictated according to the following four
rules:

1) If no relationships exist, the level is

2) In a master/slave relationship, the master level is
1 greater than the slave level

3) In a peer/peer relationship, the levels are equal

4) In any network, the lowest level is 1

It is easy to observe that all of these rules are satisfied in
the example network. When the user attempts to create a
relationship between two agents, the OA software first
consults these rules. If the new relationship will not violate
any of the four rules, it is allowed. Adding new
relationships can affect the level of the other agents in the
network. For example, let’s say we wish to make agent E a
master to agent F. The level of F will be 1 (rule 4), which
means that E will have a level of 2 (rule 2). This of course
will continue to impact the levels of the remaining agents
in the network. The result is that agents A-E will increment
their level by 1, thus satisfying all of the rules.

There are two incentives for establishing these level based
rules. The first reason is that it helps to keep track of where
each agent lies in the network. The higher the level, the
more authority and access to information it has. The other
reason is that it prevents users from establishing a poorly
structured network. For example, let’s say we wish to
make agent E a master to agent A. This could result in
commands circulating endlessly through the network, or
other undesirable effects. The rules prevent such a set of
relationships from being formed.

The primary objective in assigning relationships to agents
is to provide an organizational structure which maps
sensibly into the application for which they are designed.
Once a network of agents is developed, a designer may
press on with establishing the health monitoring and error
handling characteristics for their system.

Health Monitoring

One of the most important tasks involved with controlling
a complex system is to provide information about the
system’s health. Satellites are an excellent example--
several important parameters, such as temperature, fuel,
attitude, and power, are constantly being stored in memory
and telemetered down to earth. In an agent-based system,
where the computational tasks are distributed, it is
especially important to monitor health. In ObjectAgent, a
health monitoring architecture has been established which
accomplishes two goals. First, it enables the user to easily
define how agents conduct health monitoring. Second, it
carries out health monitoring in the background for an
agent network of any size.

Health monitoring is conducted automatically for a
network of agents that are defined through master/slave or
peer/peer relationships. Each agent has its own health
report, which is defined by the user. A health report
consists of three types of information: an overall health
number, a set of important parameters, and a descriptive
list of errors.

~ .t mm Nmwt

I=
i--- ,rr ---F

JI .~ Im ~ t.lta Jmatr ~ tree

-I ll-I "TE Tm TE

II
’J" ~ II
"--" ’Y"" /

Figure 2: HealthMonitor GUI for ObjectAgent

Figure 2 shows the HealthMonitor GUI in Matlab, where
the user specifies the details of each agent’s health report.
By default, health reports are automatically sent to master
and peer agents, although the user may define additional
destinations. Other decisions include the health
measurement period, the report period, the maximum
number of errors to include in any report (for agent
memory purposes), and whether health monitoring is
turned on or off.

The health number of an agent is an instantaneous measure
of "how well" the agent is doing. The current method of
measuring the health number is to begin with a nominal
value of I00. If the agent experiences an error, its health is
reduced by the severity associated with that error (see the
Error Handling section). When the agent recovers, its
health is restored by the same amount.

A more detailed set of information is included in the list
of important parameters. All of the outputs of skills in a
particular agent are available to be selected as important
parameters. They are measured at a specified rate, and
their name, value, and time of measurement are included in
the health report.

The final element of the health report is a list of errors.
Each time an agent detects an error, a packet of relevant
information is stored in the agent data structure (this is
discussed further in the Error Handling section). When it is
time to send the next health report, any new error
information is included.

When health monitoring is "enabled" in the GUI, the
HealthMonitorSkill is added to the agent. As discussed
earlier, the Matlab representation of a skill is a script m-
file. Skills are updated according to their update period,
which, for the HealthMonitorSkill, can be different for
each agent. The update period for this skill is
automatically set to the minimum of what the user selects

AI IN AEROSPACE65

for the measure and report periods. When the skill updates
periodically, it does so to either measure or report health.
The measurement is performed by taking a snapshot of the
agent’s health number and important parameters at that
instant in time, and concatenating that information to the
current health report. All health information is stored in
the agent until it is sent, at which time the memory is
cleared.

When it is time to send the health report, the
HealthMonitorSkill adds the task, "send message" to the
agent’s task list. Here, message is a parsed data structure
that contains the health report itself, the name of the
receiving agent, as well as instructions for the receiving
agent to update its own HealthMonitorSkill. This
automatic update is done because the user may desire to
carry out some specific actions each time a health report is
received, such as print the health report to a file. They may
code any such actions into the user-defined section of
HealthMonitorSkill.

Once a network of agents is established, a designer may
simply use the HealthMonitor GUI to design their method
of monitoring health among agents. It should be noted that
both external parameters (i.e., temperature measurements)
and internal parameters (i.e., time to run an algorithm) may
be monitored. What the designer decides to do with this
information is, of course, case specific.

Note that a master agent that has no peers or masters to
itself will only receive health reports from other agents.
Thus, it would be sensible to allocate a large block of
memory to a high level agent that would be responsible for
receiving, analyzing, and storing health information.
Similarly, artificial intelligence techniques could be added
in at any level of the network to react to the system health.

Error Handling

The fault detection architecture for ObjectAgent was
designed with two objectives in mind: I) to provide a
flexible framework to detect, report, and recover from
errors in a distributed agent environment; 2) to minimize
the amount of required user-intervention. The user is
required to supply the necessary algorithms for detection
and recovery, and to make selections in the HealthMonitor
GUI. The ObjectAgent software then uses this information,
along with the ErrorHandleSkill and appropriate FDIR
functions, to implement the error handling.

The main element of the fault detection architecture is an
error. In ObjectAgent, an error is defined as follows:

A specific occurrence, with a unique name, that
may be detected and recovered from in a
distinct manner.

There are 3 primary actions surrounding the occurrence of
an error: detection, recovery, and reporting. In an agent-

66 FLAIRS-2001

based framework, once an error is detected, that
knowledge is initially isolated to the original agent. The
recovery may be performed by the original agent or by an
outside agent, providing it has been informed. ObjectAgent
uses its message passing architecture to distribute error
information to all appropriate agents, thereby allowing a
distributed recovery approach to be used.

The user-supplied detection and recovery algorithms are
contained in FDIR functions. In Matlab, these functions
are script m-files that share the name of the associated
error. Once a user identifies an error for their system and
assigns it a name, they can introduce the error into the OA
environment by using the HealthMonitor GUI.

Referring to Figure 2, the right side of the GUI is used for
specifying the attributes of errors. The types of errors
which may occur are divided into 2 categories: Input
Errors and Skill Errors. The error handling section of the
GUI is split according to these types. For either type of
error, the GUI allows the user to do the following:

¯ Add or Remove an error
¯ Set the Tolerance
¯ Set the Severity
¯ Select which agents the error is reported to

An Input Error is any error that has to do with a specific
input to a skill, while a Skill Error is an error that occurs
while a skill updates. For example, "No Input" is a generic
Input Error that occurs when an input is expected, but is
not received. The default action is to seek for a new
source. The detection and recovery algorithms for this
error have been written into an FDIR function, which may
be applied to any input of any skill in any agent of the
system.

Errors may be either environmental or software oriented in
nature. An error such as "Bad Signal" or "High Temp"
would be environmental, whereas "No Input" is software
oriented because it refers to a skill not receiving an
expected input from another software agent.

A tolerance is associated with each error in order to give
the agent sufficient time to recover. By providing a large
enough tolerance, the agent has enough time to complete
its recovery before starting the process again. The severity
is a user-defined parameter which is related to the health.
As discussed earlier, the occurrence of an error causes the
health to be reduced by that error’s severity.

Finally, the user may select which agents are informed
when an error occurs. Upon detection, a description of the
error is immediately reported to any master or peer agents
that the agent may have. The GUI allows users to add
other agents to this list. It is useful to report errors to other
agents for two reasons. First, other agents are likely to be
affected. If they are informed, then they have a chance to

minimize the negative impact that the error may have on
them. Second, it may be useful for other agents to assist in
correcting the error. For example, in a master/slave
relationship, it may be desirable for the master to be the
sole decision-maker. When the slave experiences an error,
it reports to the master, and the master performs the
recovery algorithm, which would include new instructions
or tasks for the slave.

The following example, which is used in the ObjectAgent
Tutorial, demonstrates the error handling features of
ObjectAgent. A simple network of 3 agents is simulated.
The structure is illustrated in Figure 3.

Level 2

Level 1

I PlottingAgent I

DataAgentl I DataAgent2

Figure 3: Simulated Network

DataAgentl and DataAgent2 are identical; each possesses
the skill "DataSkilr’, which simply calculates the system
time and sends it as an output called "data". PlottingAgent
has the skill "PlottingSkill", which plots the input "data" as
a function of time. Prior to running the simulation,
DataAgentl is defined as PlottingAgent’s source of"data".

Plot of date ~ time
30

’°I 1
Ol i i i i i I

0 5 10 15 20 25 30

Health Slitus

|

!
O0 6 10 15 20 25 30

time

Figure 4: Health and "data" of Plotti.gAgent
when "No Input" error occurs

The results of the simulation are shown in Figure 4. The
goal is to illustrate that the error handling architecture
works properly by using the "No Input" FDIR function. If
the "No Input" error is detected by PlottingAgent, it should

seek for a new source, and find that source in DataAgent2.
PlottingSkill is coded such that, when the source of "data"
changes, it plots "o" instead of "x".

At 10 seconds DataAgentl is failed, preventing
PlottingAgent from receiving "data". PlottingAgent detects
the "No Input" error at 12 seconds (due to a 2 second
delay), and reduces its health by the severity of the error,
which was set to 50. After 4 seconds pass, the recovery
algorithm is shown to be successful when "data" is
received from DataAgent2.

Although this is an extremely simple example, it illustrates
the ease with which error handling may be executed. The
detection and recovery scheme of this particular error may
be applied to any input of any skill of any agent.

Conclusion

In summary, an architecture has been created for
ObjectAgent which facilitates both health monitoring and
error handling for an agent network of any size. Graphical
user interfaces enable users to easily establish relationships
in a multi-agent system, edit an agent’s health monitoring
characteristics, and assign error handling capability to
agents in a modular fashion. In this architecture, error and
health information is made readily available throughout the
agent network, extending the potential for robust
autonomy.

References
Schetter, T. P., M. E. Campbell, and D. M. Surka. 2000a.
Comparison of Multiple Agent-based Organizations for
Satellite Constellations. In Proceedings of FLAIRS 2000.
Orlando, Florida.

Schetter, T. P., M. E. Campbell, and D. M. Surka. 2000b.
Multiple Agent-Based Autonomy for Satellite
Constellations. In Proceedings of the Second International
Symposium on Agent Systems and Applications. Zurich,
Switzerland.

Surka, D. M., M. C. Brito, and C. G. Harvey. 2001.
Development of the Real-Time ObjectAgent Flight
Software Architecture for Distributed Satellite Systems. To
be Presented at IEEE Aerospace Conference 2001. Big
Sky, Montana.

Zetocha, P., L. Self, R. Wainwright, R. Bums, M. Brito,
and D. Surka. 2000. Command and Control of a Cluster of
Satellites. IEEE Intelligent Systems.

Zetocha, P. and M. C. Brito. 2001. Development of a
Testbed for Distributed Satellite Command and Control.
To be Presented at IEEE Aerospace Conference 2001. Big
Sky, Montana.

AI IN AEROSPACE67

