
Capturing Lessons Learned for Variation Reduction in an Automotive

Assembly Plant

John A. Cafeo, Diane I. Gibbons, Ronaid M. Lesperance, Alexander P. Morgan,
Giilcin H. Sengir, and Andrea M. Simon

General Motors R&D and Planning Center
Mail Code 480-106-359
Warren, MI 48090-9055

8 i 0-986-2157, 810-986-0574 fax
~.I J L" \ illlt’JCl’. J’). 1111 ~I’,~.I111~I ,~I11.C0111

Keywords: Lessons Learned, Case-Based Retrieval, Automotive Manufacturing, Ontological Engineering, Knowledge Management,
Variation Reduction, Quality

Abstract
Reducing variation in the assembly of a vehicle body is a
critical element in improving its quality. Assembly plants
have dimensional-management teams, who monitor
variation, respond to "variation crises," and continually
reduce variation when there are no crises. These teams have,
in the past, not kept archival records and have not shared
solutions with other teams. This paper describes our project
to develop a lessons-learned system for variation reduction.
The elements of the project include developing an ontology,
designing a case structure, defining similarity, and
developing a user interface for case reporting and case-
based retrieval.

Introduction

Reducing variation in the early part of the assembly of a
vehicle body is the critical element in improving its quality.
If the variation is low, the nominal points of the build can
be tuned to match their design specifications. Then, many
important customer-satisfaction issues, such as wind noise,
water leaks, door-closing effort, and "fit and finish," will be
easily controlled. (Here, "build" refers to the vehicle while
it is undergoing assembly and also to the assembly process.
This "product-process" duality in language is common in
manufacturing applications.) On the other hand, if the
variation is high, then the build will always be "off’ and
impossible to tune. Assemblies and components will not fit
together properly, and many difficult-to-diagnose-and-
repair issues will arise, both during assembly and after the
vehicle is sold.

Each assembly plant has a dimensional-management
(DM) team, which addresses variation-reduction and other
dimensional-control problems. These teams have, in the

Copyright © 2001, American Association for Artificial Intelligence
(~w.aaai.oru.). All fights reserved.

past, not kept archival records of their work and have not
shared solved problems with other teams. Sometimes,
issues solved one year must be solved again the next "from
scratch," because both records and memory fail to recall
the details of past solutions.

This paper gives an overview of our efforts to introduce
a systematic knowledge-management approach to sharing
and archiving lessons learned (Weber et al., 2000) by the
DM teams. Elements of this work include developing an
ontology for dimensional control in automotive body
shops, establishing a simple "bulletin board" for daily
sharing, designing a case structure for archival lessons that
would satisfy reporting needs and at the same time
facilitate a case-based retrieval mechanism, and designing a
user interface that would be acceptable to the process
engineers and technicians. Our project is in its early stages,
but we have learned enough to make a preliminary report.

Problem Environment, Case Structure, and
Ontology

Our project focuses on the body shop of a truck assembly
plant. The body shop’s role within the assembly center is to
make the cab, the fenders, the hood, the doors, and the bed
from stamped sheet metal parts that are produced at other
facilities. Figure 1 shows an example of a cab. The body
shop is organized into a number of zones. The output of
each zone is a sub-assembly and the inputs can consist of a
combination of stamped metal parts or sub-assemblies from
an outside supplier or sub-assemblies from a previous zone.
Within each zone, the input parts are loaded, positioned
and then joined. Some of the zones have vision stations to
measure the output dimensional characteristics of the sub-
assemblies. The analyses of these data are key pieces of
information used by the DM team in identifying and.
solving dimensional control and variation issues. Because
variation reduction (VR) is the keystone of dimensional

CASE BASED REASONING 89

From: FLAIRS-01 Proceedings. Copyright © 2001, AAAI (www.aaai.org). All rights reserved. 



control, we have focused on it in our project. This is a
somewhat arbitrary limitation, which could be easily
removed. We call our software the VRAdviser.

We need to say explicitly that in solving VR problems,
there is often not an obvious link between the observed
problem on the vehicle body and its root cause. However,
experienced problem solvers tend to work by linking a
current problem to previous similar problems, which then
provide a starting point for the diagnosis. This is one of the
main reasons that solving VR problems is a good potential
application for a case-based approach. See, for example,
(Watson, 1997) or (Leake, 1996, Chapter 

Figure 1 Example of a truck cab manufactured at the truck
assembly plant.

A typical VR "case history"
¯ begins with the first symptom,
¯ proceeds to generate further "symptoms" through the

statistical analysis of measurement data (including
correlation studies, drill down analyses, principal-
component analysis animations),

¯ goes on to generate a list of "possible root causes" at
the approximate midpoint of the case,

¯ moves to physical tests and inspections, and
¯ is completed by final tests that confirm the root cause

and cure.

Let us note an important point for the definition of
similarity. As is well understood in fault analysis, problems
cascade "downstream" until a symptom is observed, while
diagnosis proceeds by tracking symptoms "upstream" until
the root cause is revealed. It follows that two cases can be
similar, but have entirely different root causes. Suppose
case A begins with fault X, which then causes fault Y, itself
causing fault Z, triggering fault W, which directly creates
the initial symptom. Imagine case B beginning with fault Y.
The two cases might be identical, except that X is the root
cause of A and Y is the root cause of B. When we want to
solve B, we will be particularly interested in seeing A. This
means that our similarity function will need to consider

90 FLAIRS-2001

sub-case similarity in a way that strongly favors sub-case
matching, while not penalizing the parts that don’t match.
This is not a typical "similarity function," as described for
example in (Watson, 1997).

There are other aspects of this environment that lead us
not to expect to identify a fixed set of attributes whose
values define a definite problem and unique solution. The
diagnostic process can involve many data tests and physical
tests, and the technicians want the freedom to decide which
tests to run and the order in which they are done. [This
point was made in (Hamilton, 2000), where a case structure
with some elements in common with ours is described.]
Further, a good deal of the "knowledge content" of the case
history is in the chain of causation and the chain of
discovery. Consider: a weld robot programming error
causes excessive weld tip pressure, which leads to
excessive weld tip wear in station 5 at the same time as a
warping of the assembly that exits station 5, which leads to
a locating pin in station 23 becoming loose, which causes
an assembly-to-assembly variation which is observed via
analysis of measurement data further downstream. It is the
combination of the loose pin in station 23 with excessive
weld-tip wear in station 5 that signals the proper diagnosis.
These faults might occur separately, but then the root
causes might be different. Representing every possible fault
in a fixed set of attributes or organizing diagnosis around a
small number of questions linked to attribute values [as
described in (Watson, 1997, Chapter 7)] is not reasonable
here. In particular, each case may have a different number
of relevant attributes, and the approach to comparing cases
for similarity must take this into account. The "information
completion" framework described in (Lenz, 1998) in 
context of "case retrieval nets" does provide a formal
structure which we might use, but the practical issues of
dealing with "mismatching cases" and developing a
workable similarity function remain. We should also note
that similarity is not our only concern. The lessons-learned
case structure must be capable of generating reports which
express the problem and solution in terms that are
meaningful to the DM team members. Thus, some items of
data which might be discarded to generate a case index
must be preserved in the cases themselves.

In the light of these (and other) considerations, we have
developed the following case structure. A case consists of
an arbitrary number of "observations." There are 24 types
of observations. Each type has a fixed structure, essentially
a fixed set of attributes, although we allow lists of values
for some attributes. Thus, two observations of the same
type from two different cases may be compared with each
other in a one-to-one manner, as long as some way of
comparing lists of values for the same attribute is available.
Only a few types of attributes are important for similarity.
However, all are significant for case capture and reporting.



There isn’t space in this brief paper to consider the
ontology in detail. Because we want the observation
templates to be organized around "menu selection" rather
than "authoring" and because the VR world is relatively
lira/ted, the ontology consists of a rather complete set of
plant-floor object names with verbs and verb phrases which
express process elements, faults with process elements,
tests, results of tests, and other such objects. These are
partially organized taxonomically, somewhat like the
hierarchical domain model for the diagnostic support
application described in (Bergmann et al., 1999, chapter 9).
There is also a library of pictures showing, in particular, the
relevant parts, components, sub-assemblies, and
assemblies. These pictures are mostly design diagrams
generated in the course of planning the build, but made
active for point-and-click selection of specific parts and
assemblies. They have a natural taxonomic classification
derived from the parts breakdown of the build. A small
number of the pictures describe the body-shop layout.
Their taxonomy follows the factory-floor organization by
zones, stations, and machines. All of these pictures can be
used to annotate observations. This is extremely important,
because a great deal of the dimensional-management
knowledge is expressed in terms of pictures. Observations
can be annotated by text as well as pictures, but we have set
out to create the VRAdviser so that text annotations are
optional. Some multimedia objects would also be relevant
for diagnosis and might be attached to observations in the
future; for example, principal-component analysis
animations, virtual reality presentations showing how the
assemblies should fit into the tooling and interact with the
machines, the sound of specific machine faults, etc.

One interesting element of manufacturing applications is
the product-process duality of expression which is
commonly used. In other words, process problems and
their corresponding effects on the product are often
referred to interchangeably and with a certain ambiguity:

¯ "The Station A build is off in the down direction."
¯ "The pins in Station A are low."
* "The left front fender needs to be moved up lmm."
¯ "The pins in station A need to be moved up lmm."

are (hypothetically) all saying essentiaUy the same thing.
We see that an additional element of ambiguity can be
added by referencing a process fault and an action to
correct the fault interchangeably. We can imagine cases
with these kinds of variations of expression which we
would want to match during similarity search. Part of the
motivation for using observation templates and a limited
ontology is to control the number of ways of saying the
same thing. We have not tried to eliminate the product-
process duality of language, however, as this is too much a
part of standard assembly-plant usage. Rather, we have
tagged dual expressions to be similar.

Analytical cases were created to seed the VRAdviser, in
an exercise with the DM team in which we visited each
station, talked about what could go wrong with process
elements in that station and what effects on the build each
fault might cause and where these faults would most likely
be detected. This information was synthesized into a set of
about 50 analytical cases, which serve as an independent
resource (e.g., they can be browsed) as well as being seed
cases for similarity search.

User Interface

We were told when we began the VRAdviser project that
the DM team members would have to be able to enter a
case in two minutes and not have to do any writing at all.
Otherwise, they would not have the patience to use the tool.
Our compromise is that an experienced user can enter an
observation in two minutes. The 24 types are organized
under 8 tabs: data test, data analysis, correlation, product
problem, process problem, action, comparison,
interpretation. The observations are essentially fill-in-the-
blank sentences, which can be completed using pull-down
menus that select objects from the ontology. Choices are
limited to what makes sense for the particular slot being
filled in. The DM team is fairly picky about language and
generally dislikes generic nouns and verbs. Behind the
scenes, however, generic information (e.g., the inner leaves
of taxonomies) are used in the way the pull-down choices
are organized, for similarity computations, and for
generating summary statistics over all cases. The pictures
are organized for selection using the taxonomies noted
above.

At the request of the DM team we provided an additional
element, a "shift log," in which random unstructured
comments can be made, organized by date and shift and
zone. These notes are read by one shift to see what the last
few shifts have been working on. They contain direct
messages from one shift to the next. Thus, they perform the
function of a simple bulletin board for the team. Shift log
entries can be used to identify problems that will become
cases, but many of them do not.

The DM team uses a specialized in-house statistical
package to analyze the data from the vision stations. This
data analysis generates statistical information including
graphs and charts, which can be cut and pasted into
observations as annotations.

In the spirit of fast prototyping and easy integration, we
used Microsoft Access and Visual Basic to build the
VRAdviser. The s/milarity function is written in C.

CASE BASED REASONING91



Similarity and Case-Based Retrieval

Given the complexity of the case structure, it is natural to
generate an index for each case and define similarity in
terms of the indices. Similarity is developed by considering
case relevance from the point of view of the specific DM
team problem-solving process. In other words, when the
team is considering a new case, what sorts of reference
cases would it want to be reminded of?. There are several
natural focal points:

¯ Similarity of location, in terms of the geography of the
plant; e.g., cases may involve the same zone, the same
station, or contiguous zones or stations.

¯ Similarity of location, in terms of the geography of the
body; e.g., involve the roof line, involve the left front
part of the cab.

¯ similarity of structure, in terms of the vehicle body;
e.g., the roofline and the door ring are both boundary
regions whose dimensional control is critical.

¯ similarity of process function, e.g., two welding
processes or (more generally) two joining processes.

¯ similarity of tools, e.g., pins and clamps, or robots, or
glue guns.

We have not done much field testing of our similarity
function, and we expect to refine and simplify it as it is
used. Our current thinking is that if case A/s similar in any
way to case B, then the DM team would want the cases and
the nature of their similarity brought to its attention. The
VRAdviser is not for a "naive user." Rather it is to aid the
diagnostic reasoning of human experts. As a new case is
"being completed," additional information will be entered
but "... the additional information may not come directly
from the most similar cases, [but rather these similar cases]
might suggest tests to be performed in order to obtain [the]
new information." (Lenz et al., 1998, p. 65) Note, too, that
this is an application which will always have only a "few"
cases, as opposed, say, to certain web-based or e-business
applications. Significant VR problems occur at the rate of
about one a week in a body shop. Even multiplying this
over 20 assembly plants and I0 years, the number of cases
is on the order of 10,000. With proper case-base
management, the number should remain considerably
smaller than this.

Current Status
Most of our time last year has been spent in learning how
to approach the ontological engineering and in building a
good working relationship with the plant. We have entered
a fairly complete starter set of analytical cases, and we are
getting a good deal of feedback from the DM team. The
comments are positive, but the number of modifications
requested is large. This is as expected in prototype
development. The number of cases captured so far makes
premature any assessment of our approach to similarity.

Summary and Future Work

We have launched a prototype variation-reduction adviser.
This includes

¯ developing an ontology which makes sense in terms of
case reporting and case retrieval requirements, and

¯ seeding the system with a set of analytical cases.
When the number of cases grows to a large enough
number, we will test our similarity strategy. We expect to
modify and simplify, but we do not anticipate this to be a
roadblock to completion of the project.

The long term intent is to link all assembly plants to the
same case base, so that lessons learned in plant A can
benefit plant B. There are (essentially) no ontological
issues for several plants building the same product. For
different products, the ontological issues have to do with
"lifting" the specific language favored by the DM teams to
generic language which could suggest solutions across
platforms. This is our eventual goal.

References

Bergmann, R.; Breen, S.; Gtker, M.; Manago, M.; and
Wess, S. (eds.) 1999. Developing Industrial Case-Based
Reasoning Applications: The INRECA Methodology.
Lecture Notes in Artificial Intelligence 1612, Springer-
Verlag, Berlin.

Hamilton, A. and Gomes, B. 2000. Failure Analysis of
Semi-conductor Products. In Innovative Customer
Centered Applications, Trento, Italy, Sept. 2000, oral only.

Leake, D. (ed.) 1996. Case-Based Reasoning: Experiences,
Lessons, & Future Directions. AAAI Press, Menlo Park,
California and The MIT Press, Cambridge, Massachusetts.

Lenz, M., Bartsch-Sp6rl, B., Burkhard, H.-D., Wess, S.
(eds.) 1998. Case-Based Reasoning Technology. Lecture
Notes in Artificial Intelligence 1400, Springer-Verlag,
Berlin.

Watson, I. 1997. Applying Case-Based Reasoning:
Techniques for Enterprise Systems. Morgan Kaufmann,
San Francisco.

Weber, R.; Aha, D. W.; Munoz-Avila, H.; and Breslow, L.
A. 2000. Active Delivery for Lessons-Learned Systems. In
Blanzieri, E. and Portinale, L. (eds.) Advances in Case-
Based Reasoning: yh European Workshop, EWCBR 2000,
Trento, Italy, September 2000, Proceedings, 322-334.
Lecture Notes in Artificial Intelligence 1898, Springer-
Verlag, Berlin.

92 FLAIRS-2001


