
Exploiting Fuzzy-SQL in Case-Based Reasoning

Luigi Portinale and Andrea Verrua
Dipartimento di Scienze e Tecnoiogie Avanzate (DISTA)
Universita’ del Piemonte Orientale "Amedeo Avogadro"

C.so Borsalino 54 - 15100 Alessandria (ITALY)
e-mail: portinal @ mfn.unipmn.it

Abstract

The use of database technologies for implementing CBR
techniques is attracting a lot of attention for several reasons.
First, the possibility of using standard DBMS for storing and
representing cases significantly reduces the effort needed to
develop a CBR system; in fact, data of interest are usually
already stored into relational databases and used for differ-
ent purposes as well. Finally, the use of standard query lan-
guages, like SQL, may facilitate the introduction of a case-
based system into the real-world, by putting retrieval on the
same ground of normal database queries. Unfortunately, SQL
is not able to deal with queries like those needed in a CBR
system, so different approaches have been tried, in order to
build retrieval engines able to exploit, at the lower level, stan-
dard SQL. In this paper, we present a proposal where case
retrieval is implemented by using a fuzzy version of SQL. In
the presented approach a fuzzy notion of similarity is adopted
and an extended version of SQL, dealing with fuzzy predi-
cates, is introduced. A case-based system prototype exploit-
ing Fuzzy-SQL as a retrieval engine is then presented.

Introduction
The use of database techniques for supporting the construc-
tion of case-based systems is attracting serious attention; the
reasons are twofold: i) if data of interest are already stored
in a database, the database itself can be used as a case base;
ii) part of the technological facilities of a DBMS may be
exploited in the CBR cycle, in particular for case retrieval.

This is particularly true in e-commerce applications,
where the product database represents the main data source,
whose records are easily interpretable as "cases" for a case-
based recommendation system (Schumacher & Bergmann
2000; Schumacher & Roth-Berghofer 1999; Wilke, Lenz,
& Wess 1998), as well as in the broad context of knowl-
edge management, for the implementation of corporate-
wide case-based systems (Kitano & Shimazu 1996; Shi-
mazu, Kitano, & Shibata 1993). All these database driven
proposals focus on the retrieval step of the CBR cycle l, since
Copyright (~) 2001, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

] Actually, in (Wilke, Lenz, & Wess 1998) a revision of the clas-
sical CBR cycle presented in (Aamodt & Plaza 1994) is proposed,
by specifically taking into account the e-commerce application;
however no particular database technique is specifically proposed
for implementing this new cycle.

similarity-based retrieval is the fundamental step that allows
one to start with a set of relevant cases (e.g. the most rele-
vant products in e-commerce), in order to apply any needed
revision and/or refinement.

Case retrieval algorithms usually focus on implement-
ing Nearest-Neighbor (NN) techniques, where local simi-
larity metrics relative to single features are combined in a
weighted way to get a global similarity between a retrieved
and a target case. In (Burkhard 1998), it is argued that the
notion of acceptance may represent the needs of a flexible
case retrieval methodology better than distance (or similar-
ity). As for distance, local acceptance functions can be com-
bined into global acceptance functions to determine whether
a target case is acceptable (i.e. it is retrieved) with respect
to a given query. In particular, very often local acceptance
functions take the form of fuzzy distributions; in this way,
the definition of a fuzzy linguistic term over the domain of
a given attribute of a case can be exploited to characterize
the acceptance of cases having similar (in the fuzzy sense)
values for that particular attribute or feature.

In the present paper we will present an approach where
local acceptance relative to a feature can be actually ex-
pressed through fuzzy distributions on its domain, abstract-
ing the actual values to linguistic terms. The peculiarity of
the approach is that global acceptance is completed defined
in fuzzy terms, by means of the usual combinations of lo-
cal distributions through specific defined norms (Liu & Lee
1996). Moreover, an extended version of SQL, able to deal
with fuzzy predicates and conditions, is introduced as a suit-
able way to directly query a case base stored on a relational
DBMS; this approach is based on the SQLf language pro-
posed in (Bose & Pivert 1995), extending standard SQL
order to deal with fuzzy queries. A system prototype able to
generate a Fuzzy-SQL query from a case specification and
working on top of a standard relational DBMS has been im-
plemented; its main features will be presented in the paper.

Fuzzy Querying in Databases
It is well-known that standard relational databases can only
deal with precise information and standard query languages,
like SQL, only support boolean queries. Fuzzy logic pro-
vides a natural way of generalizing the strict satisfiability of
boolean logic to a notion of satisfiability with different de-
grees; this is the reason why considerable efforts has been

CASE BASED REASONING 103

dedicated inside the database community toward the possi-
bility of dealing with fuzzy information in a database.

There are at least two main approaches to the problem: i)
explicit representation of vague and imprecise information
inside the database (Buckles & Petry 1982; Medina, Pons,
& Vila 1994); ii) vague and imprecise querying on a regu-
lar database (Bose & Pivert 1995; Kacprzyck & Ziolowski
1986). Even if the first class of approaches is more general
that the second one, we will concentrate on the latter, since
the interest in this paper is to show how flexible querying
in a standard database can be used to implement case re-
trieval. In particular, in (Bose & Pivert 1995) standard SQL
is adopted as the starting point for a set of extensions able
to improve query capabilities from boolean to fuzzy ones.
While the long term goal of the approach is to integrate such
extensions directly at the DBMS level (directly providing
the user with specific DBMS algorithms for flexible query
processing), in the short term the implementation of the SQL
extensions can be actually provided on top of a standard re-
lational DBMS, by means of a suitable module able to trans-
form a fuzzy query in a regular one (derivation principle).

In the following, we concentrate on this methodology, by
defining a set of fuzzy extensions to SQL that may be of in-
terest for CBR and by showing how they can be processed in
order to transform them in standard queries; we finally show
how this can be actually implemented for case retrieval pur-
poses. We are interested in simple SQL statements with no
nesting (i.e. we consider the WHERE clause to be a ref-
erence to an actual condition and not to nested SQL state-
ments); in our Fuzzy-SQL language, the condition can be
a composite fuzzy formula involving both crisp and fuzzy
predicates and operators.

Fuzzy Predicates
A set of linguistic values can be defined over the domains
of the attributes of interest; three different types of fuzzy
predicates are considered:
¯ fuzzy predicates on continuous domain: a set of linguistic

values defined on a continuous domain and through a con-
tinuous distribution (e.g. a trapezoidal or a gaussian-like
possibility distribution);

¯ fuzzy predicates on discrete domains: a set of linguistic
values defined on a discrete domain, but with two differ-
ent possible types of distribution: continuous for scalar
discrete attributes (i.e. with ordered values) (e.g. a trape-
zoidal distribution for the linguistic value young defined
over the discrete domain of integers of the attribute age)
or discrete for nominal attributes (with unordered val-
ues) (e.g. a vector distribution for the linguistic term
bright defined over the attribute color, associating to
each color the membership function to the fuzzy set).

Furthermore, a set of fuzzy operators can be defined to relate
fuzzy or crisp predicates; also in this case we have different
types of operators:
¯ continuous operators: characterized by a continuous dis-

tribution function (e.g. the operator near over scalar at-
tributes, characterized by a gaussian-like curve centered
at 0 and working on the difference of the operands);

104 FLAIRS-2001

¯ discrete operators: defining a similarity relation charac-
terized by a symmetric matrix of similarity degrees (e.g.
the operator compatible over the attribute job defin-
ing to what degree a pair of different jobs are compatible).

By allowing fuzzy predicates and operators to form the con-
dition of the WHERE clause, the result of the SELECT is
actually a fuzzy relation, i.e. a set of tuples with associated
the degree to which they satisfy the WHERE clause. Such a
degree can be characterized as follows: let

SELECT A FROM R WHERE fc
be a query with fuzzy condition fc; the result will be a fuzzy
relation Rf with membership function

pRf(a) = sup l~/c(z)
(zER)A(a~.A=a)

The fuzzy distribution p.cc(z) relative to fc must then to
computed by taking into account the logical connectives in-
volved and their fuzzy interpretation. It is well known that
the general way to give a fuzzy interpretation to logical con-
nectives is to associate negation with complement to one,
conjunction with a suitable t-norm and disjunction with the
corresponding t-conorm (Liu & Lee 1996). In the following,
we will concentrate on the simplest t-norm and t-eonorm,
namely the rain and max operators such that

I~AA.(Z) = min(pA(X), IJBCz))
#AvB (X) max(/zA (x),/~B (X

We will discuss the implementative advantages of this
choice and what problems have to be addressed with other
norms.

Deriving Standard SQL from Fuzzy-SQL
In order to process a query using a standard DBMS, we have
to devise a way of translating the Fuzzy-SQL statement into
a standard one. We have noticed that the result of a fuzzy
query is always a fuzzy relation, while the result of a stan-
dard query is a boolean relation; this means that, if we are
able to translate a fuzzy query into a standard one, the re-
suiting boolean relation has to satisfy certain criteria related
to the original fuzzy query. The most simple way is to re-
quire the fuzzy query to return a boolean relation Rb whose
tuples are extracted from the fuzzy relation Ry, by consider-
ing a suitable threshold on the fuzzy distribution of Rf. We
consider, as in (Bose & Pivert 1995), the following syntax

SELECT (A) A FROM R WHERE fe
whose meaning is that a set of tuples with attribute set A,
from relation set R, satisfying the condition fc with degree
p > A is returned (in fuzzy terms, the A-cut of the fuzzy
relation R.¢ resulting from the query is returned).

The idea is then to transform the fuzzy query into an SQL
query returning a superset of the A-cut of the result relation.
The interesting point is that, if we restrict attention to the
kind of queries previously discussed (which are suitable to
model standard case retrieval) and if we adopt rain, max as
norms, then it is possible to derive from a Fuzzy-SQL query,
an SQL query returning exactly the A-cut required. This can
be easily verified as follows: let P be a fuzzy predicate;
we write P _> A to indicate that P is satisfied with degree
greater or equal than A; let be DNC(P, >_, A) the derived

1

0.8

h£gh

price 1100 1800

1,

0.8-

100 125

Figure 1 : Fuzzy Distributions

necessary condition for P > A, i.e. a boolean condition
such that P _> A --+ DNC(P, >_, A). It is trivial to verify
that

AND(P1,...,P,) > A ~ ,nin(Pt ,Pn) > A
DNC(Pa, >, A)..., DNC(PI, >, A)

OR(P],...,Pn) > A ++ max(P1 ,Pn) > A
DNC(P1, >, A)..., DNC(P1, >, A)
This implies that, using rain and max operators, each de-
rived necessary condition is also a sufficient one and thus
the obtained boolean condition can be used to return exactly
the required A-cut 2. Each DNC can then be obtained from
the fuzzy distribution associated to the involved predicate.

Example. Consider a relation product containing the
attribute price over which the linguistic term high is de-
fined. Figure I shows the fuzzy distribution of high as
well as the distribution of a fuzzy operator > > (much higher
than). The condition (price = highAprice >> 1000) >
0.8 will hold iff rain(price = high, price >> 1000) >
0.8, iff (price = high) >_ 0.8 A (price >> I000) _>
iff (1100 _< price _< 1800)A (price- 1000) _> 120.
The latter condition can be easily translated in a standard
WHERE clause of SQL.

Unfortunately, there are situations (for instance when
norms different that mi,, ,nax are used) where the exact
derivation of the A-cut is not possible; in these cases a su-
perset of the actual A-cut will be returned. There are two
possible solutions to that:

1. to implement an external filter receiving in input the result
set of the query, producing in output the actual A-cut, by
filtering out those tuples having degree less than A;

2. if the DBMS support the inclusion of external functions

"-Similar results hold for (P, <; A), to be used when negation
involved.

in the query language, to use this facility to compute, dur-
ing query processing, the actual degree of the tuple, by
accepting only those belonging to the A-cut.

In the next section, we will show how these strategies may be
implemented in a system able to create a Fuzzy-SQL query
from a target case, in order to retrieve a set of similar cases.

An Architecture for Fuzzy
Case Retrieval

Following the approach outlined in the previous sections,
we have implemented a system able to process Fuzzy-SQL
queries on top of a relational DBMS; since emphasis is given
to case retrieval, the system provides a way of generating the
relevant fuzzy query from a target case specification. The ar-
chitecture of the system is shown in Figure 2. A case base
is implemented using a standard relational database, where
cases are stored in a suitable set of tables; in addition to the
object database, a meta-database storing all fuzzy informa-
tion and knowledge is also required. At the current stage, all
the meta-data (definitions of fuzzy predicates and operators)
are stored in a relational format as well, in such a way that
standard queries can be used to process this kind of informa-
tion (we have chosen POSTGRES as DBMS for the current
implementation). A Fuzzy-SQL Server is devoted to the pro-
cessing of the fuzzy query, by means of a Parser/Translator,
implemented using Lex and Yacc; the syntax of the fuzzy
query is checked and a standard SQL query is then gener-
ated, by deriving the DNCs using the fuzzy knowledge in
the meta-database.

Finally, a Web-Based Graphical User Interface has been
implemented in .lava, exploiting standard browsers’ capabil-
ities. The GUI fulfills the following requirements:

¯ automatic Fuzzy-SQL query generation from a target case
template;

¯ manual Fuzzy-SQL query construction;

¯ meta-data management operations (definition of fuzzy
knowledge) and database administration.

While the user can always require a suitable retrieval by con-
structing a fuzzy query by hand, the system also provides a
more case-based interface able to construct a fuzzy query
from a target case specification. We restricted our atten-
tion to flat representation of cases through (feature, value)
pairs. However, while cases are stored in the database by
using, for each attribute, only values from the corresponding
domain, target cases may also be specified by using linguis-
tic (fuzzy) abstractions on such values. This means that, for
each feature (attribute) to be specified in a target case, three
different possibilities can be used:

I. specification of a linguistic value;

2. specification of a crisp value, to be used as is;

3. specification of a crisp value to befuzzified.

In the last case, fuzzification may take place in different
ways; for instance, in case of a scalar attribute A whose in-
put value is a, the fuzzy expression A near a can be used

CASE RASED REASONINGlOS

US~ER

Fuzzy Data

M~nagement Operations

!
I

II

AUTOMAT I C

_~QUERY CONSTRUCTION~

t
NORM FILTER

4
I

Result Set]

I Postgres SERVER
(RDBMS

Datmbase

SQL Query

Meta-Database

Fuzzy

Information

r
TARGET

CASE

Fuzzy-SQL
Query

PARSER/
TRANSLATOR

Figure 2: System Architecture

1

~,-o. 75

h:Lgh

iiiiiiiiiii iiiiiiiiiiiii iiiiiiiiii...

1000 prt.ae

Figure 3: Fuzzification Example

instead of A : u3. More sophisticated fuzzification strate-
gies can also be defined, by constructing a fuzzy distribution
from those defined over the domain of the attribute and from
the input value. An example is provided in figure 3 where
a fuzzification threshold 4’ = 0.1 is specified on the fuzzy
distributions for the linguistic term high of the attribute
price with input value 1000; the result is the fuzzification
of price= 1000 in terms of the fuzzy distribution shown
as a bold line in figure 3; the slopes of the distribution can be
determined in dependence on the original fuzzy distribution,
by setting a spread factor similar to that used in the HCV
algorithm (Wu 1999). Fuzzification may be more complex

3A more general solution could be to provide specific operators
of nearness near~ for each individual scalar attribute A.

in case the input value belongs to more than one fuzzy set
(i.e. if more linguistic terms are applicable to the input);
that case the fuzzification process must take into account a
suitable t-conorm (usually the max operator) to combine the
results from each fuzzy set.

In addition to the specification of a crisp or linguistic
value, in the target case template the user can also specify
additional conditions involving specific (possibly fuzzy) op-
erators (e.g. the user can specify that it requires cases with
price=high and price >> 1000). Finally, a global re-
trieval threshold A is specified. A Fuzzy-SQL query can then
be generated as follows: i) one or more tables (R1, .. ¯ Rk)
whose rows contain the cases of interest for retrieval are se-
lected; ii) a fuzzy condition/c is created by taking the AND
of all the expressions (crisp, fuzzy and fuzzified) specified
the case template; iii) a query of the form
SELECT (A) * FROM R1,...R k WHERE fc
is generated. Figure 4 shows a screen shot of part of
the interface for constructing the query (the example uses
a slight variation of the travel database available from
http://www.ai-cbr.org). The execution of this
query will then return a set of cases (in the form of table
tuples) having the required degree of similarity (i.e. at least
A) with the target case.

From the architectural point of view, the module of the
systems have been designed to run on the Internet platform,
so communication among module is realized by means of
TCP/IP protocol. The only constraint, in the current ver-
sion, is that the Fuzzy-SQL Server must run on the same ma-

106 FLAIRS-2001

Figure 4: WHERE Clause Construction

chine where the WWW server is running, because of the use
of Java applets in the implementation of the GUI; no con-
straint is put on the location of the DBMS Server. Since the
user interface is realized via standard browser facilities, the
client browser, the DBMS and the Fuzzy-SQL Server can
in principle be on different machines. Finally, it is worth
noting that in figure 2, a specific module called Norm Fil-
ter is shown; this may be needed in case norms different
than min and max are adopted, in order to reduce the re-
sult set to the desired/-cut. As mentioned before, this filter
would not be necessary if the Fuzzy-SQL Server includes in
the translation process external function calls able to verify,
during query processing, the degree of satisfiability of the
tuples; this capability must be supported by the DBMS and
the Fuzzy-SQL Server has to use the meta-database for func-
tion implementation. The different data flow of the result set
in the different situations (use of the filter or not) are shown
in figure 2 with dashed lines. At the current stage, the use of
external functions, even if supported by POSTGRES, has not
been implemented yet.

Conclusions
In the present paper a case retrieval system, exploiting a
Fuzzy-SQL query language has been presented. The sys-
tem is able to automatically produce a fuzzy query from a
target case template and can exploit the support of a stan-
dard relational DBMS for storing and retrieving cases. Un-
like similar approaches, the emphasis is given to acceptance
criteria defined through fuzzy distribution, instead that to
distance functions as in NN approaches. Future work will
concentrate on the possibility of creating more parametric
queries, also supporting the different importance a given at-
tribute may have in specific retrievals.

References
Aamodt, A., and Plaza, E. 1994. Case-based reasoning:
Foundational issues, methodological variations and system
approaches. Al Communications 7(1):39-59.

Bosc, P., and Pivert, O. 1995. SQLf: a relational database
language for fuzzy querying. IEEE Transactions on Fuzzy
Systems 3(1).

Buckles, B., and Petry, E 1982. A fuzzy representation

of data for relational databases. Fuzzy Sets and Systems
7:213-226.

Burkhard, H.-D. 1998. Extending some concepts CBR:
foundations of case retrieval nets. In Lenz, M.; Bartsch-
Spoerl, B.; Burkhard, H.-D.; and Wess, S., eds., Case
Based reasoning Technology: from Foundations to Appli-
cations. LNAI 1400, Springer. 17-50.

Kacprzyck, J., and Ziolowski, A. 1986. Database queries
with fuzzy linguistic quantifiers. IEEE Transactions on
Systems, Man and Cybernetics 16(3).
Kitano, H., and Shimazu, H. 1996. The experience-
sharing architecute: a case study in corporate-wide case-
based software quality control. In Leake, D., ed., Case
Based Reasoning: Experiences, Lessons attd Future Di-
rections. AAAI Press.
Liu, C., and Lee, C. G. 1996. Ne,ral Fuzzy Systems. Pren-
tice Hall.
Medina, M.; Pons, O.; and Vila, M. 1994. GEFRED, a
GEnerilized Fuzzy model for REletional Databases. h~for-
mation Sciences 76(1-2):87-109.
Schumacher, J., and Bergmann, R. 2000. An efficient
approach to similarity-based retrieval on top of relational
databases. In Blanzieri, E., and Portinale, L., eds., Proc.
5th EWCBR, 273-284. Trento: Lecture Notes in Artificial
Intelligence 1898.
Schumacher, M., and Roth-Berghofer, T. 1999. Archi-
tectures for integration of CBR systems with databases
for e-commerce. In Proc. 7th German Workshop on CBR
(GWCBR’99).
Shimazu, H.; Kitano, H.; and Shibata, A. 1993. Re-
trieving cases from relational databases: another strike to-
ward corporate-wide case-based systems. In Proc. 13th
bTtern. Joint Conference on Artificial hltelligence (I J-
CA 1"93), 909-914.
Wilke, W.; Lenz, M.; and Wess, S. 1998. Intelligent
sales support with cbr. In Lenz, M.; Bartsch-Spoerl, B.;
Burkhard, H.-D.; and Wess, S., eds., Case Based reason-
ing Technology: from Foundations to Applications. LNAI
1400, Springer. 91-113.

Wu, X. 1999. Fuzzy interpretation of discretized intervals.
IEEE Transactions on Fuzzy Systems 7(6):753-759.

CASE BASED REASONING 107

