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Abstract

Theoretically well-founded, Support Vector Machines
(SVM) are well-known to be suited for efficiently solv-
ing classification problems. Although improved gener-
alization is the main goal of this new type of learn-
ing machine, recent works have tried to use them dif-
ferently. For instance, feature selection has been re-
cently viewed as an indirect consequence of the SVM
approach. In this paper, we also exploit SVMs dif-
ferently from what they are originally intended. We
investigate them as a data reduction technique, useful
for improving case-based learning algorithms, sensitive
to noise and computationally expensive. Adopting the
margin maximization principle for reducing the Struc-
tural Risk, our strategy allows not only to eliminate ir-
relevant instances but also to improve the performances
of the standard k-Nearest-Neighbor classifier. A wide
comparative study is presented on several benchmarks
of UCI repository, showing the utility of our approach.

Introduction

Support Vector Machine (SVM) algorithms have been
successfully applied in recent years to solve classifica-
tion and regression problems. Their goal consists in
constructing nonlinear decision functions by training
classifiers to perform a linear separation on the origi-
nal instances mapped by a function ¢ to a very high-
dimensional feature space. To avoid computationally
expensive calculations in this new space, one usually
uses suitable kernel functions K. The choice of K de-
termines if the SVM is a polynomial, a neural-network
or a Radial Basis Function classifier.

The SVM strategy adopts the Structural Risk Min-
imization principle (Vapnik 1979). Theoretically, 
amounts to minimizing the VC (Vapnik-Chervonenkis)-
dimension, which is one of the two parameters (with the
empirical risk) controllable for converging on the the-
oretical risk of the problem. The VC-dimension h for
a set of functions {f(c~)} is defined as the maximum
number of points that can be shattered by {f(c~)} (ex:
h ---- 3 for the set of oriented lines in R2). SVMs are in
fact a practical implementation of this Structural Risk
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Minimization, and consists of a quadratic programming
problem, and for which Burges and Crisp (2000) have
presented conditions for the uniqueness of the solu-
tion. Geometrically, this approach consists in prac-
tice in maximizing margins between typical instances
of classes, called support vectors.

Even if conceptually SVM algorithms are intended for
solving classification problems, recent researches have
tried to exploit the interesting theoretical properties of
these machines for solving other learning or data analy-
sis problems. For instance, Bradley and Mangasarian
(1998) have shown that feature selection is an indirect
consequence of the support vector machine approach.
Moreover, Schblkopf et al. (1998) analyze SVM as 
efficient way for extracting polynomial features for non-
linear Principal Component Analysis. In this paper, we
also exploit SVMs differently from what they are origi-
nally intended. We show that prototype selection (PS)
is a direct consequence of the SVM approach, and we
investigate them as a data reduction technique in favor
of case-based learning algorithms, such as the k-nearest
neighbor classifiers (kNN) (Cover and Hart 1967). 
tually, kNN classifiers are well known to be good can-
didates for solving machine learning problems. Never-
theless, this effectiveness is counterbalanced by large
computational and storage requirements. In such a
context, many data reduction methods has been pro-
posed last decades for reducing storage requirements,
while not compromising the generalization accuracy of
the model (Hart 1968), (Gates 1972), (Aha, Kibler 
Albert 1991), (Aha 1992), (Brodley and Friedl 1996),
(Brighton and Mellish 1999), (Wilson and Martinez
2000), (Sebban and Nock 2000). Wilson and Martinez
(2000) have presented a framework for clustering 
algorithms according to different criteria: instance rep-
resentation, type of selected instances (center or border
points), and direction of search (incremental, decremen-
tal); we can also add to this list the type of optimized
criterion (empirical risk, information measure, statis-
tical criterion, etc.). In this paper, we propose a new
manner to select prototypes which uses the SVM princi-
ple for improving the performances of a kNN classifier.
not only in terms of complexity but also of general-
ization. This way to proceed can be justified by the
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following arguments:

¯ While most of the prototype selection procedures are
based on heuristics minimizing suited criteria (empir-
ical risk, information measures, etc.), several results
have already shown that SVMs are theoretically well-
founded (reduction of the Structural Risk (Vapnik
1979), uniqueness of the solution (Burges and Crisp
2000), etc.). This rigorous framework, added to the
fact that the Structural Risk has not been yet ex-
ploited in the field of prototype selection, is a con-
vincing argument for a wider use of SVMs.

¯ SVMs adopt the margin maximization principle
which consists in pushing apart two parallel planes
(for a 2 class problem), while keeping decision bound-
aries. This planes are supported by support vectors,
which can be viewed as typical instances. SVMs use
these support vectors in their decision function for
labelling a new unknown example. We think that
this way to proceed can be extended to the proto-
type selection field which also searches for relevant
prototypes while not compromising the generaliza-
tion accuracy.

¯ Schblkopf et al. (1995) have shown that most de-
duced support vectors are shared by the different ker-
nels K, i.e. most of the centers of an SVM with
Gaussian kernels coincide with the weights of the
polynomial and neural network SVM classifiers. This
interesting property seems to show that SVMs con-
struct efficient and stable decision boundaries what-
ever the kernel functions used. Then, we think that
we can exploit these support vectors for extracting
prototypes also useful for a kNN classifier. That is
the aim of this paper.

After a brief review of the SVM principles in Sec-
tion 2, we present the framework of our adaptation of
SVMs to prototype selection in Section 3, as well as our
algorithm, called PS2VM. A large comparative study
with the state-of-the-art prototype selection algorithms
is provided in Section 4, according to three performance
measures: the storage reduction, the generalization ac-
curacy and the sensitivity to noise.

The Support Vector Machine

Many theoretical results have shown that the minimiza-
tion of the empirical risk Remp is not sufficient to guar-
anty the minimization of the actual risk R, when R~mp
is assessed from a limited number l of learning exam-
plcs. The Support Vector Machines are based on the
following inequality, with probability 1 - y:

where *(~, I° l--~)= ~/h(]O8 ~J’+l)-|Og(4-~|

The main parameter of the second term is h, which
corresponds to VC-dimeusion of a set of functions. This
Vapnik Chervonenkis-dimension describes the capacity
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of a set of functions implementable by the learning ma-
chine. Then, one can control R by controlling two quan-
tities: Remp which depends on the function chosen by
the learning machine, and h the VC dimension. The
Support Vector Machines propose an efficient practical
implementation of this Structural Risk Minimization,
for which we propose to present below a brief review.

Consider a problem with two classes and I learning in-
stances (xi, y~), where xi is an n-dimensional real vector
and Yi is the class (-1 or +1). If the points are linearly
separable, there exists a decision rule f(xi) = w.xi + 
which attributes the label +1 to a given xi instance, if
w. xi + b >_ 1, and the label -1 if w. xi + b _< -1. The
problem consists in determining the n-vector w and the
scalar b. In fact, in many real world problems, a model
without classification errors does not exist. That is the
reason why Cortes and Vapnik (1995) introduce slack
variables ~i >_ 0, i = 1 .... ,l, to get y~(w. x~+b) >_ 1-~i.

Minimizing the guaranteed risk R with a SVM al-
gorithm amounts in fact to minimizing the following
quantity ~(w, ~) = w.w + 7 ~ ~i, where V is a positive
constant. Minimizing the first term amounts to mini-
mizing the VC dimension h, and minimizing the second
(which corresponds to an upper bound of the number
of misclassified instances) amounts to minimizing the
empirical risk Re,,,p.

Using Lagrange multipliers ai and the Kuhn-Thcker
theorem, the solution of this optimization problem ks

1
w -~- ~ yiot~xi

i=1

Then, the decision rule becomes,
l

= + b)
i=l

Instance xi having a corresponding ai ~ 0 are called
support vectors of the problem. Geometrically, min-
imizing w.w corresponds in fact to maximize margins
between two separating planes, one supporting the class
-1 and the other supporting the class +1 (see Figure 
for a 2-D example with its corresponding support vec-
tors).

So far, we have briefly described linearly separable
problems. In order to allow decision surfaces which are
not linear, the SVM algorithm projects, by a function 0,
input vectors in a high-dimensional feature space allow-
ing then a linear separation. In order to avoid computa-
tionally expensive calculations in this high-dimensional
space (i.e. ¢(x).¢(xi)), one usually use suitable func-
tions K such as,

¢(x).¢(x,) ---- g(x, xi)

Then, the decision rule becomes,
l

f(x) = sgn(E yic~ig(x.x,) 
i=l

where K is called the kernel.

Different kernel functions as been already used, which
determine whether the resulting SVM is a polynomial



Figure h A 2-class simulated problem with its support
vectors (indicated by an extra circle) and its errors (in-
dicated by a cross).

classifier, a neural network, a radial basis function ma-
chine, or some other learning machine. For example,
we can use the following kernels:

¯ g(x,x~) = (x.x4 1)d i. e. ¢(x) is a polynomial fun
tion,

¯ g(x, x4) = tanh(ax.x4) for building a neural network,

¯ K(x, x4) e-~Hx’x’l?is a Gaussian kernel.

Surprisingly, Sch61kopf et al. (1995) have shown that
most of the deduced support vectors are shared by the
different kernels. Starting from this interesting prop-
erty, our aim consists in exploiting the SVM decision
rule for eliminating irrelevant learning instances and
improving the performances of the kNN classifiers.

SVM and Prototype Selection

Prototype selection can be viewed as an implicit conse-
quence of the Support Vector Machines. Actually, even

l
if the decision rule f(x) = sgn(~ y4a4g(x.x4) -{- 

4----1
uses theoretically all the l learning instances, only those
which have a coefficient a4 ~ 0 are in fact taken into
account. All the remaining examples x4 of the train-
ing set which have a coefficient a4 = 0 can be viewed
as being irrelevant. Then, not only SVMs provide a
rigorous theoretical framework by minimizing the VC-
dimension, but also it provides a favorable framework
for reducing storage requirements, in accordance with
the prototype selection constraints. Actually, PS algo-
rithms search for small and efficient subsets of instances
which keep as well as possible decision boundaries, after
removing different categories of irrelevant instances:

¯ the first belong to regions where local densities are
evenly distributed,

¯ the second concerns mislabeled instances,

¯ the last concerns useless instances at the center of
clusters.

By analyzing the SVM strategy, we can note that
all these objectives can be satisfied. In the linear case

PS2VM(LS)
Determine Support Vectors
Remove from LS instances

misclassified by SV
Remove useless instances such as

vxj ~ LS : if

n~u

4=1

then remove xj from LS

Return LS

Figure 2: Pseudocode for PS2VM.

(which can be easily extended to nonlinear decision sur-
faces), three categories of instances can be drawn from
the constraint Y4 (w. xi + b) _~ 1 - ~i.

¯ the support vectors for which the equality y,(w.
x4+b)- 1 = 0 (with ~4 = 0) holds. They maxi-
mize margins and do not affect decision boundaries.
An efficient PS algorithm based on SVM must keep
these relevant instances.

¯ the irrelevant instances which satisfy automatically
the constraint y4(w. x4+b) > 1-(~ with ~i = 0. These
instances are irrelevant because they are automati-
cally correctly classified by support vectors. They
do not bring useful information for the model and so
they have to be remove by our PS algorithm.

¯ the last concerns misclassified and mislabeled in-
stances. For an error to occur, ~4 must exceed unity
(that is the reason why ~ ~4 is an upper bound on
the number of test errors). Then, we have to remove
instances for which ~/> 1.

From these different properties of SVMs, we can eas-
ily derive our new PS2VM (for Prototype Selection
via Support Vector Machine) algorithm, for which the
pseudocode is presented in Figure 2..

Experimental Results

Presentation
The goal of this section consists in assessing PS2VM
according to three performance criteria, usually used in
prototype selection: the storage reduction, the general-
ization accuracy and the sensitivity of the algorithm in
the presence of noise. Moreover, our aim is to compare
PS2VM with the state-of-the-art PS algorithms. Even
if several PS methods have been proposed last decades,
we decided to compare PS2VM with three recent ap-
proaches which cover a large spectrum of PS strategies:

¯ The Consensus Filter CF (Brodley and Friedl 1996)
was originally proposed for eliminating mislabeled in-
stances, by a consensus vote of different base-level de-
tectors, in agreement to remove an example. The CF
has already shown very interesting results not only
for improving kNN performances (Sebban and Nock
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Datasets kNN

Ace.

Audiology 73.7

Australian 78.7

Big Pole 59.9

Breast 96.2

Echocardio. 55.7

German 71.5

Glass 73.2

Hard 47.5

Heart 76.7

Hepatitis 82.4

Horse Col. 72.9

Ionosph. 81.0

LED+17 76.1

LED2 85.1

Pima 67.6

Vehicle 71.8

White House 91.9

Xd6 78.8

Average 74.5

GF

Acc. prot.

74.4 85.7

77.5 84,4

60.8 69.8

96.6 97.3

68.4 67.0

72.6 77.4

71.0 79.2

47.4 l 65.5

79.2 80.8

81.0 87.7

72.5 [ 80.0
80.4

i 87.3
76.6 ~ 81.5

89.0 191.0
67.4 ~ 75.9

71.7 I 77.5

91.2 I 94.5 I

79.3 I 85.5

75,4 J 81.5 [

~73

Acc. prot.

71.1 ] 11.3

75.3 [ 11.8

57.6 I 14.1

63.6 l 1.1

55.9 I 6.2

69.1 ] 9.4

55.5 I 9.6

44.7 I 14.7

72.1 I 4.2

76.3 I 9.0

71.1 I 9.2

75.6 I 9.4

72.8 I 21.8

62.5 1 2.3

61.9 I 6.3

60.8 I 8.9

84.5 I 4.2

69.0 I 14.9

66.6 [ 9.4

PSRCG

Acc. prot.

73.9 68.0

77.5 58,4

59.2 86.9

96.9 9.7

62.0 68.1

72.2 72.2

74.0 66.0

45.4 88.1

77.4 45.6

80.1 45.7

72.7 74.7

80.4 62.1

76.1 83.8

84.3 45.6

67.3 65.6

70.3 65.1

91.7 29.7

78.8 71.8

74.5 61,5

SVM (line~r)

Acc. prof.

70.6] 40.2
79.1 I 85,1

64.4 1 49.4

95.3 ] 5.1

67.0 I 42.6

71.5 I 35.4

74.6 I 72.6

50.8 I 56.3

80.7 I 35.2

82.2 I 30.9

62.1 I 28.8

75.6 I 30.5

63.7 I 31.3

79.4 I 44.1

71.3 I 46.4

72.2 I 71.2

65.7 I 10.8

78.3 [ 41.7

72.5 I 42.1

SVM (polyn.)

Ase. prot.
72.1 I 52.1

79.4 I 50.4

61.1 I 50.8

96.9 I 35.8

66.9 I 58.9
72.7 I 48.1

75.2 I 78.6

41.2 I 75.9

8O.3 I 61.8

78.0 | 61.3

62.9 I 60.9

75.0 I 70.9

76.1 I 98.7

89.2 [ 57.7

70.1 I 46.8

71.5 I 56.2

91.5 I 46.2

81.3 I 51.9

74.5 [ 58,5

SVM (RBF)

Ase. prot.

75.6166.4

77.7 I 48,8

62.1 [ 63.4

96.0 I 44.2

64.9 I 53.0

72.4 I 39.3

74.6 I 71.9

48.0 I 57.9

80.3 l 38.7

76.3 I 40.9

74.8 I 79.1

78.3 I 56.8

76.1 I 64.7

88.2 I 57,0

69.1 I 43.6

73.5 I 58.0
91.4 I 28.6
78.0 I 48.4

75,5 I 53,4

Table 1: Generalization accuracy (Acc.) and storage requirements (prot in % of the original size) for 3 PS algorithms
and 3 kernel functions used in pS2VM on 18 datasets. The standard kNN is added for comparisons.

2000) but also for reducing decision tree complexity
(Brodley and Friedl 1996). Here, we used three kNN
classifiers as base-level detectors, k=l,..,3.

¯ In (Sebban and Nock 2000) authors proposed with
PSRCG a new way to proceed by tackling the PS
problem as an information preserving problem, and
the minimization of local and global quadratic en-
tropies in a neighborhood graph.

¯ Finally, in their algorithm RT3 (Wilson and Martinez
2000), an instance w is removed if its removal does
not hurt the classification of the instances remaining
in the sample set, notably points that have co in their
neighborhood (called associates).

We compared these PS algorithms on 18 datasets,
mainly coming from the UCI database repository 1. For
each dataset we achieved a 10 fold-cross-validation pro-
cedure, applying the prototype selection algorithms on
9 folders and testing the model on the remaining one.
The same procedure is repeated for the 10 permuta-
tions. In order to estimate the sensitivity of pS2VM to
the choice of the kernel function, we applied with the
same experimental setup three standard functions K:
linear, polynomial and Radial Basis Fknction.

Storage Reduction and Generalization
Accuracy

In this section, we intend to evaluate the storage re-
duction and the generalization ability of the classifiers
obtained after elimination of irrelevant instances v/a our
pS2VM algorithm. The performance on the tolerance

z http://www.ics.uci.edu/-mlearn/MLRepository.html

to the presence of noise in data is discussed in the next
subsection.

From results of Table 1, we note that it is very
difficult both to reduce the storage requirements and
control the generalization accuracy. The Consensus
Filters provides actually the best generalization accu-
racy (75.4%, i.e. +0.9 in comparison with the stan-
dard kNN), but also the worst storage reduction (only
18.5%). On the other hand, RT3 achieves the high-
est storage reduction (80.6%), while not controlling the
accuracy of the model (-7.9). According to the two
first performance criteria, PSRCG achieves the high-
est performances among the state-of-the-art PS algo-
rithms (this note was already done in (Sebban and Nock
2000)), reducing the storage requirements of about 40%,
while achieving the same accuracy.

Table 1 also presents the accuracy generalization and
the storage requirement of the models built after remov-
ing irrelevant instances by pS2VM. Except RT3 (which
controls only one performance criterion), pS2VM re-
moves more instances than the standard PS algorithms,
while controlling accuracies. The best one is indis-
putably pS2VM with the RBF kernel. Not only this
procedure allows to reduce more efficiently the storage
requirements than PSRCG (53.4%, resulting in a large
computation reduction during the classification phase
of new unkown instances) but also it improves the gen-
eralization accuracy of the standard kNN on the whole
learning set (75.5% vs 74.5%). Using a Student paired
t-test, we can note that this difference is highly sig-
nificant with a critical risk near 5%. Then, pS2VM
with the RBF kernel provides the best balance between
the storage reduction and the generalization accuracy.
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Figure 3: 2D-example and prototypes selected by
PS2VM according to three kernel functions.

Figure 3 shows empirically on a 2-class problem that
pS2VM with the RBF kernel can actually efficiently

solve problems for which the other kernel functions can
encounter diff~culties.

Sensitivity to Noise
After analyzing the storage reduction and the gen-
eralization accuracy, we assess here the tolerance of
pS2VM in the presence of noise. A standard approach

consists in adding artificially some noise in the data, by
randomly changing the output class of 5% of the learn-
ing instances to an incorrect value. Table 2 presents
results on these noisy datasets, which confirm those
presented on noise-free databases, and the order estab-
lished between the different PS algorithms.

PS Algorithm Noise Free Noisy

Acc, Prot. Acc. Plot.

kNN 74.5~6.1 1O0 ~.4~7.1 100
CF 75.4~6.7 81.5 ~.4~6.8 79.4
RT3 66.6~9.9 9.4 64.4-1-9.7 8.9
PSRCG 74.5~6.3 61.5 ~.3±r.2 64.3
SVM Linear 72.5~7.1 42.1 ~.s±s.2 42.9
SVM Polyn. 74.5~6.6 58.5 ~.o±r.9 52.2
SVM RBF 75.5~6.4 53.4 ~.4±6.9 54.6

Table 2: Generalization accuracy and storage require-
ments when noise is inserted

Conclusion
We have presented in this paper an adaptation of Sup-
port Vector Machines to the prototype selection prob-
lem for kNN classifications tasks. Results on several
data bases confirm the utility of our approach, and
show that such a strategy seems to be more efficient

than the standard prototype selection algorithms, with
higher accuracy and storage reduction. So far, we de-
cided to remove an instance if this one is misclassified
(i.e. ~ > 1). Nevertheless, we think that it might
be interesting in future works to statistically study the
deletion of an instance according to a minimal risk of
error, that would allow higher storage reduction.
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