From: FLAIRS-01 Proceedings. Copyright © 2001, AAAI (www.aaai.org). All rights reserved.

A* as an Optimal Resource Allocation Policy in Path Finding Problems

Antti Autere
Dept. of Computer Science and Engineering, Helsinki University of Technology,
P.0.Box 5400, FIN-02015 HUT, FINLAND
email: aau@cs.hut.fi

Abstract

Consider a problem of finding a path from a start to a goal
node on a graph. Suppose that we have divided the problem
into smaller problems by dividing the search graph into sub-
graphs. Nodes and edges in a subgraph form subsets of the
nodes and the edges in the original search graph.

Assume that we have either specialized algorithms for search-
ing the subgraphs or only a single algorithm expanding nodes
in every subgraph. Usually it is impossible to know a pri-
ori which algorithm finds solution paths fastest or which sub-
problem is the easiest to solve.

In this paper, we will examine how A™ can be used as a re-
source allocation policy for node expansions among the sub-
graphs. Moreover, we will discuss when A* is the optimal
algorithm for that purpose.

Keywords: Resource Allocation, Path Finding, A*

Introduction

Let G = (N, E) be a locally finite graph, where N is a set
of nodes and E is a set of edges between the nodes. The
nodes represent system states and the edges transitions from
one state to another. For example, a system state can be a
robot manipulator in a particular position in its work space.
A transition is a movement of the robot from one position to
another.

A positive cost c is associated with every edge in E. A
search problem refers to finding a path, a concatenation of
nodes and edges, from a start node to a goal node on G. A
path has a cost that is the sum of its edge costs.

Subproblems

Suppose that we have several different algorithms for solv-
ing a path finding problem. They can share a common search
graph or have their own search graphs. In the latter case, for
example, the algorithms may use different representations
and data structures for the problem. It is also possible that
the search graphs have common nodes and edges, e.g., in
bidirectional search using the same graph but different start
and goal nodes.

Copyright © 2001, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

It may be possible to divide a search problem into a set of
smaller subproblems. This can be based on the knowledge
and previous experience of an expert person on that problem
domain. Every subproblem can have a specialized algorithm
for solving it or there can be a single algorithms for all the
subproblems. The subproblems can be solvable either in-
dependently of each other or not. If they are independently
solvable and the goal of the original problem has the form
goal = g, and g2 and ..., where the g;s are the goals of
the subproblems, then we usually call the original problem
decomposable.

Let us now formalize the above cases by using search
graphs. Assume that the original path finding problem has
a search graph G. We model the subproblems by subgraphs
G;of G: G = G1 UG2 UG3U...UG,. In addition to search
graphs, path finding problems have also start nodes s and
sets of goal nodes I'. Hence both the original and the sub-
problems are actually triples (G;, s,T") but we denote them
here by G and G;, respectively.

We will use the following operations between graphs. Let
G; = (N,',E,‘). First, Gy, - Gj iff N, C Nj and E;, C E]'.
Second, let the original search graph be G = Gy UG). Then
the union of the two subgraphs G and G; is Gx U G; =
(Nt UN;, ExUE; UEy ;). The set of edges E} ; connects
nodes ny € N and n; € Nj in G. Finally, the union of
several graphs, and the intersection of two and more graphs
are defined analogously.

An intersection of G; and G; (i # j) is not necessarily
empty. Every G; can have a “private” search algorithm A;
for expanding its nodes or there can be only a single algo-
rithm expanding all the nodes in G. Expanding the nodes in
G; can generate successors in G; (i # 7). Hence a final so-
lution path can have nodes in several GG;s. The subproblems
can also be independently solvable.

If several algorithms solving the same problem use their
own search graphs G;, then every G; itself represents the
original problem. In this case, calling the G;s subgraphs or
subproblems is somewhat misleading. Despite of this, we
will formally writt G = (J]_, Gi. Here G is actually a
union of different representations of the same problem.

A simple example where G = G; UG2 and G = G =
G is a bidirectional search: there are two algorithms A; and
A, searching G and G, respectively. G, and Gy have
different start and goal nodes. The goal of G; is the start of

DECISION ANALYSIS 139

G2 and vice versa. The search stops if either algorithm finds
its goal node or A; tries to expand a node that has already
been expanded by 4; (j # 7). Both the algorithms can also
be instances of a single one, for example A*.

Usually we may be able to say which nodes belong to
which subgraph without starting any search. An example of
this is a path finding on a d-dimensional rectangular grid.
Nodes are in coarser or finer subgrids. This corresponds to
searching the original grid with different resolutions. Here a
subgraph equals to a subgrid of one resolution. The sub-
graphs are defined before the search process begins. We
have used this method in robot path planning, see [1].

Alternatively, we can decide in which subgraph a node
is only after an algorithm has generated it. The generated
nodes are included in the subgraphs according to criteria that
are implemented in the algorithms themselves. The criteria,
for example, can use information about the generated nodes
and their immediate predecessors. For more details, see [1].

Resource Allocation

Let a search problem on a graph G be divided into subprob-
lems: G = |J]_, Gi. Assume that we know how to expand
nodes in every G;, which is programmed in the search algo-
rithms.

Assume that the subproblems G; are not independently
solvable or we have less than r computing machines avail-
able. Then we have to define a strategy that tells us which
subproblem G is assigned to which machine at a time be-
fore any nodes are expanded. Let us call this strategy a
resource allocation policy among the subgraphs G;, or the
subproblems. In this paper, we assume that only one ma-
chine is available for all the G;s.

One resource allocation policy is to first search for a so-
lution on the graphs | JI1, G;, r1 < r. If a solution is not
found then search a bigger set of graphs |J;2, Gi, 11 <
r2 < r, etc. This strategy can be called greedy or a depth-
first search among the graphs G;. If the original graph G
has infinite number of nodes, then it may happen that this
method fails to find a solution path even if it exists.

Another resource allocation policy is to search all the the
graphs G; (i = 1,2,..,7) at the same time. We assign to
each node n] in G; a weight w]. An algorithm can mini-
mize the numbers or total weights W; = Z;(=1 w] of the
expanded nodes in every G; in order to find a solution path
on one of them. K is the number of the expanded nodes in
G; at a given time. This is done by next expanding a node in
G ; that has a minimum total weight W; so far. The strategy
corresponds to a breadth-first search among the graphs G;.

Suppose that we do not know which subproblem G; is the
easiest to solve. Alternatively, we do not know which algo-
rithm is best in solving a given problem. Then we may wish
to use the algorithms in such a way that the number of the
nodes that they have expanded together in G is minimized
when a solution path is found. In this sense, the above depth-
first and breadth-first strategies can hardly be compared with
each other a priori.

Let us modify the breadth-first strategy: if node expan-
sions in G} generate paths that “seem to lead towards a

140 FLAIRS-2001

goal”, then give computing resources to explore more nodes
in G before start searching any other G; (j # k). One way
to implement this strategy is that we estimate the number
of the nodes still to be expanded in every G; before a solu-
tion is found. The estimate, say H, works here similarly as
a heuristic function A in the A* algorithm. In the modified
resource allocation policy, the sets of the expanded nodes in
different G;s correspond to paths in the A*.

It turns out that the new modified strategy is optimal over
the breadth-first strategy. The notion of optimality will be
defined below. Moreover, in some cases the new strategy is
the best one available. This is possible because it has the
same structure as the A* and “inherits” its optimality prop-
erties.

In the next section, we will give a summary of the opti-
mality properties of A*. After this we will define the new
resource allocation policy and show that it is equal to A*.
In the rest of the paper, we will examine situation where the
new algorithm is the best available and how to calculate its
heuristic H by using the heuristic h related to A*. The rest
of the paper is divided into two subsections. In the first sub-
section, we allow paths to have nodes only in one subgraph,
e.g., when the subproblems are independently solvable. In
the second subsection, paths can have nodes in different sub-
graphs, a situation which is more complex. We will also
present a pseudo code of the new algorithm.

Optimality Properties of A*

In brief, A* (originally in [3]; see also [4] and [5]) is an
ordered best-first graph search algorithm that always ex-
pands the “most promising” node n based on the function:
f(n) = g(n) + h(n). g(n) is the cost of the cheapest path
from the start node to n. The heuristic h(n) is an estimate
of the cost of the cheapest path from n to any goal node. A
pseudo code for A* is, e.g., in [5] p. 64-65.

A* always finds a cheapest path from the start node to a
goal node if it exists when the heuristic underestimates the
actual cost of the cheapest path from any node to the goal
(h < h*). In this case, both h and A* are called admissible.

Let the domain of problem instances on which A* is ad-
missible be denoted by I 4p, see [2] (p. 96):

IAD‘:{(GasaFah)thh‘mGL 4y

where G = (N, E) is a locally finite graph. s € N is the
start node and I" C N is a set of goal nodes.

A heuristic h(n) is consistent if it satisfies the triangle in-
equality: h(n) < k(n,m) + h(m) for any node n and its
descendants m, see [5] (p- 82). k(n,m) is the cost of the
cheapest path from 7 to m. Consistency implies admissibil-
ity but not vice versa.

A heuristic h(n) is monotone, if it satisfies: h(n) <
¢(n,n') + h(n') for every n and its immediate successors
n'. Monotonicity and consistency are equivalent properties
[51 (p. 83).

Let C* be the cost of an optimal path on G. When A*
has found the optimal path using an admissible heuristic, it
has surely expanded any node reachable by a strictly C*-
bounded path. A path is strictly C*-bounded if every node

n along that path satisfies f(n) < C*. On the other hand,
if A* uses a monotone heuristic, then it has surely expanded
the set {n | f(n) = g*(n) + h(n) < C*}, cf. [5] (p. 84).

The nodes for which f(n) = C* may or may not be
expanded depending on the so called tie-breaking rule.
Taking this into account we will next define the notion:
“algorithm 1 is optimal over algorithm 2”:

Definition 1. [2] (p. 96): An algorithm A is said to be
optimal over a class A of algorithms relative to a set I of
problem instances if in each instance of I, every algorithm
in A will expand all the nodes surely expanded by A in that
problem instance.

Theorem 1. cf. [2] (Theorem 3, p. 98): A* is optimal over
any algorithm which is admissible on I4p and provided a
consistent heuristic h.

If the heuristic is not consistent (can be admissible though),
then no such optimal algorithm exists [2] (p. 98). In case
of a consistent heuristic the expression “is optimal over” or
“dominates” is synonymous with “largely dominates”, see
(51 (p. 85).

Theorem 2. [5] (p- 81 and 85): If hs > h; and both are
admissible (monotone), then A3 using h2 is optimal over or
dominates (largely dominates) AT using h;.

A* as a Resource Allocation Policy

Consider a path finding problem and its search graph G =
Ui-, Gi where the intersection of the Gis is not necessar-
ily empty. Let there be algorithms A;, Ay, .., A, expand-
ing nodes in Gy, Ga,..,G;, respectively. Some or all the
algorithms can be identical. For example the bidirectional
search, in “Introduction”, has » = 2 and A; = A, except
their starting and goal nodes that are reversed. Furthermore,
there can also be a single algorithm for expanding all the
nodes in G.

Assume that A; has expanded every node in a subgraph
Gi(1) C G; at “atime” 7. Let N;(1) C N; be the set of
the expanded nodes at 7 and | N;(7) | be the number of the
nodes in N;(7).

The breadth-first strategy for allocating computing re-
sources among the G;s, in “Introduction”, is: at T, choose
the G;(7) for which | N;(7) | is minimum and expand one
successor to a node in N;(7). Clearly, if a solution path is
first found in G (7*), then | Ng(7*) | is minimized.

Let N;(7!) and N;(72) be the sets of the nodes that an
algorithm A; has expanded at 7!, and 72 > 7!. Assume that
| Ni(t!) |= 1. If Ny(7) = N;(!) where 7! < 7 < 72 and
Ni(7?) contains only one more node than N;(7!), then let
us simply write N;(7!) = N;(I) and N;(72) = N;(1 +1) =
N|(l). The set N/ is called a successor to the set N;.

Now, imagine that every set N;{l) forms a node and there
is an edge between N;(l) and N/(l) = N;({ + 1) for all
l =1,2,.... For example, if A; expands a starting node s
in G; at 7, then N;(1) contains only s. Thus N;(1) = {s}
is another node. Its successor node N/(1) = N;(2)

contains two nodes in G; expanded by A;, say, s and n;:
N;(2) = {s,n1}. Similarly, N/(2) = N;(3) = {s,n1,n2}
after A; has expanded n; etc.

Definition 2. Let a graph G = |J;_, G and N;(l) be the
set of the expanded nodes in G; C G at 7. Call N;(l) a
node. N/(l) = N;(I + 1) is the only successor to N;(l) if
| N;(U+ 1) [=| (D) | +1 =1+ 1

Let there be an edge between N;(l) and N/(I) with an
associated cost C'(N;(l), Ni(1)) > 0 for any i and I. There
is no edge allowed from NN; to N; if i # j. Let there also be
a dummy node N (0) with edges from N (0) to every N;(1).
C(N(0), Ni(1)) = a; > 0.

A concatenation of the nodes and the edges, starting from
N(0), form a list called an abstract or a meta path and is
denoted by M P; (i = 1, ..,7). The cost of M F; is the sum
of its edge costs. End of Def. 2

In general, it is sufficient that only one of the subgraphs G
contains the start node and one contains the goal node.

If the costs C(N;(l), N/(I)) = 1 for every ¢ and I,
then minimizing the cost of M P;(l) equals to minimizing
| N;i(l) |=l. For example, if a goal is found first in Gy, con-
taining {* expanded nodes, then the cost of the optimal meta
path M P is I*.

Based on Definition 2. the above breadth-first search
strategy among the G';s can be interpreted as one finding
a cheapest meta path M P; starting from N (0).

From now on, N; represents N;(l) for all {. Let a graph
MG = ;_, MP;. Actually, MG is a tree with a root
N (0). Analogously to I4p in Equation (1) let MI5p be:

MIap = {(MG,s,T,H) | H < H*on MG}. (2)

Assume again that C(V;, N}) = 1 for all 4. Assign to each
node N; along M P; a heuristic H(N;(1)). H(N;(l)) is an
estimate of the number of nodes to be expanded in G;, after
1, before a solution path on G is found. Similarly, H*(N;(1))
is the minimum number of nodes still to be expanded in G
before a goal is found. If H(N;) < H*(N;) for all N;, then
H is called admissible.

The breadth-first strategy for finding a cheapest meta path
MP; C MGhas H(N;) = 0 < H*(N;). Hence it is admis-
sible on the domain M I 4p of problem instances. However,
if we can estimate an admissible H > 0, then an A* using
it is also admissible on MI4p. Then Theorem 2. implies
that the A* is optimal over the breadth-first strategy relative
to MI4p.

If H(N;) is also consistent then we can reformulate
Theorem 1.

Theorem 3. Let A* be the resource allocation policy for
node expansions among the subgraphs G; (i = 1,..,r),
or among the algorithms A;. Assume that the A* uses the
nodes and the meta paths in Definition 2. and is provided a
consistent heuristic H, in equation (2). Then the A* largely
dominates (or is optimal over) any resource allocation pol-
icy that is admissible on M I 4p, if provided the same H, in
a sense of Definition 1.

DECISION ANALYSIS 141

Proof. Follows directly from Theorem 1. O

Suppose that we wish to use the algorithms A; searching the
graph G = (J_, G; in such a way that the number of the
nodes that they together expanded in |J]_, G; is minimum
after a solution path is found. Then Theorem 3. says that
the A* defined above is the best resource allocation method
among the ones that use the same consistent heuristic H. If
H is admissible, then the A* is optimal over the breadth-first
strategy by Theorem 2.

Estimating the Heuristic H by h

Let a search graph G = |JI_, G; and algorithms 4; be as
before.

Suppose that we can not estimate H explicitly or node
expansions in G require different amount of computational
work. The work is measured by the edge costs of G. Let
us associate with every node n a cost or a weight w(n) =
¢(m,n), the cost of an edge between n and its immediate
predecessor m. If there are many paths leading to n, then
we define w(n) = ¢(m, n) where m is the father of n when
n was found at the first time. Let us arbitrary assign w(s;) =
a; > 0 to the first node s; in V;.

Assume that we can calculate a heuristic h(n) for all the
nodes n in G. If a goal node and n; are in a subgraph G,
then h(n;) estimates the cost of the path from n; to the goal.
If G; does not contain any goal node, then h(n;) = 0 or
H(N;) is estimated in some other way.

Let us allocate computing resources for node expansions
among the graphs G;, or among the algorithms A;, such that
the number of the weighted nodes expanded in |J_, G; is
minimized. This can be done by the A* algorithm minimiz-
ing the costs of the meta paths in Definition 2. From now
on, let us call the A* used in resource allocation A}, it
searches the graph MG in M1 4p defined in equation (2).
Now, the edge cost between a node N; and its successor IV}
is C(N;, N}) = ¢(n,n') = w(n'), n' € N;.

Paths with Nodes in a Single Subgraph

Assume that all the subgraphs G; have the start and goal
nodes. If every G; has a solution path, then the subproblems
represented by the G';s can be solved independently of each
other. The intersection of G; and G (j # k) may or may
not be empty. The bidirectional search, in “Introduction”, is
an example of the latter case (G1 = G2).

Let us now consider the following case: if a node in G| is
expanded then all its successors will be only in G; and not
in any other subgraph.

Theorem 4. Suppose that A}, uses the nodes and the meta
paths in Definition 2. Assume that every path candidate F; is
on G; (P; C Gj). Let C(N;, N]) = w(n]) = c¢(ni,nj) >0,
where n; and its successor n} both are in Gi. If h(n;) is
monotone for all n; in all G;, then A}, using a function

F(N;) =GWN;) +H(N:)
= Y1, w(nd) + min{h(n]) | n] € N; Vj}

142 FLAIRS-2001

is admissible on MI4p. N; has K; expanded nodes at a
given time. In other words, A}, minimizes Z;{;x w(n})
after a goal has been found in G. Furthermore, A}, is
the optimal resource allocation policy for node expansions
among the G;s according to Definition 1.

Proof. Let us expand a node nj, a successor to n;. If
h(n}) > H(N;) then H(N/) = H(N;) by the definition of
H. Assume that h(n}) < H(N;). This implies H(N]) =
h(n}) > h(ni) — ¢(ni,n}). The latter inequality follows
from the monotonicity of h. Hence H(N]) > H(N;) -
C(N;, N|) since H(N;) = min{h(m;) | m; € N;} and
C(Ni,N]) = c(ni,n}). Thus H is monotone, consistent
and admissible.

Hence A}, is admissible in MI4p and largely domi-
nates (is optimal over) any admissible algorithm in M Isp
by Theorem 1. O

The proof of Theorem 4. essentially says that the minimum
of monotone heuristics is also monotone.

Theorem 4. do not require that the algorithms A;, ex-
panding nodes in G;s, must themselves use the monotone
heuristics k. Only the resource allocation algorithm A},
utilizes it. The A;s can be any path searching algorithms,
not necessary admissible ones. Recall that there can also be
a single algorithm for expanding all the nodes in G.

Let us further discuss the bidirectional search on the graph
G in “Introduction”. If we can calculate monotone heuristics
h; and hy for the algorithms A; and A;, then A}, is the
optimal resource allocation policy between A; and Ay ina
sense of Definition 1 by Theorem 4.

The bidirectional search proceeds as follows. First, 4
and A expand their starting nodes s; and s3. Hence
Ni(1) = {s1} and No(1) = {s2}. The OPEN set of
A} has now two nodes N, (1) and N2(1). F(Ni(1)) =
F(N5(1)) = 1+ hy(s;) assuming that h; (s1) = ha(s2) and
w(s1) = w(sz2) = 1. Suppose that A}, selects first Ny (1).
It means that one of the successors s} to s; is expanded
by A;. After this A}, generates a successor to N;(1),
N1(2) = {s1, 81}, and calculates F(N;(2)) = G(N1(2)) +
H(N1(2)) = 1+ c(s1,8}) + min{hi(s1),h1(s})}. Thus
the OPEN set of A}, now contains nodes N1 (2) and Na(1)
since Ny (1) is now placed on CLOSED. Next, A}, selects
a node from OPEN for which the F -value is minimum etc.
Both the A;s have their private mechanisms of choosing the
next node in V; to be expanded. They can use the h;s or not.
They can also be A* algorithms if wanted.

Paths with Nodes in Many Subgraphs

Let us delete an assumption of Theorem 4: “every path can-
didate P; C G;”. Hence solution paths can contain nodes
in several subgraphs G; (i = 1,2,..,7). Subgraphs G; and
G (j # k) can have common nodes. It is not necessary,
however, that the start node and goal nodes are in every G;.

In this section, the expansion of a node in G; can produce
successors that are also in Gj, ¢ # j. The resource
allocation algorithm A},; then chooses on which set
N; (j = 1,..,7) to place the successors. Let us first extend
Definition 2.

Definition 3. All the sets V; in Definition 2. contain
both expanded and open, unexpanded, nodes in G;. The
predecessor of N; contains no open nodes. | N; | is the
number of the expanded nodes in /V; at a given time.

Let us now assign a type to every node: n has a type k if
n is in G and it is denoted by ng. It is possible that the type
of the node is known before any algorithm has generated
it, namely, if we know the division G = |J_, Gi a priori.
On the other hand, a decision on which set Ny a node n’ is
placed may depend on the type of its predecessor n and is
found out after the expansion of n. In the latter case, the
type of the node is implicitly defined whereas in the former
case it is explicitly defined.

As an example, let us discuss the search graph defined on
a d-dimensional rectangular grid and mentioned in “Intro-
duction”, see [1] for more details. The nodes on the grid, G,
are vectors n € Z¢ whose components are integers. For ex-
ample, the neighboring nodes in G are n = (ny,ng, ..., Ng)
andn’ = (n1,n2+1,...,n4). G = GUG2 UG UGU..U
Gmaz defines a hierarchy of grids as follows. The nodes in
G; (i = 1,2,4, ..,max) are vectors {n = (ny,n2,...,Nq) |
ged(ny,ng, ..., ng) = i}, where ged(-) denotes the great-
est common divisor of the arguments. Thus the types of
the nodes are explicitly defined. The subgraphs G; do not
have any common nodes. However, there are edges between
nodes in different G;s such that the expansion of a node in
G; can produce successors that are in G, 1 # j.

Let us discuss an example of the implicit problem division
(1. Denote now by G* the graph G; in the graph hierarchy
of the previous paragraph. Here the subgraphs G; do not
refer to the graph hierarchy but are defined as follows. First,
assume that A}, has chosen a set IV;. Second, suppose that
anode n; in G; has been expanded. Let n; be in G’ and its
successor n’ be in G* in the graph hierarchy. If k > j then
Al places n' on N; and sets 4 as the type of n'. If k < j
then n’ is placed on N and its type is k. Hence the type of a
successor depends on the type of its father. We can imagine
that every N; contain nodes in G, in the graph hierarchy,
from which trees of partial paths start. Nodes in this forest
of trees in N; are in G¥, k > i.

In general, A}, works as follows. After a node n; in
N; is expanded A}, places its every successor nj, on Ni
where the type £ = 1,2, ..,r can be different from i. The
successors are now open nodes in Ni. The function F(N;)
is calculated as in Theorem 4.

A pseudo code of A}, is shown below. In the code,
“N()” is N; and “n.type” is the type of n. OPEN refers
to the set of sets N(i) that contain at least one open unex-
panded, node.

ALGORITHM A};:

(1) Choose the first node m, create a set
N{m.type) and place it on OPEN

(2) Place m on N(m.type)
and calculate F(N(m.type))

(3) Choose N(i) containing open nodes
from OPEN for which F(N(i)) is minimum

(4) IF no such N(i) is found on line (3)
(5) THEN exit with failure
(6) ELSE expand an open node n in N(i)
{(7) IF n is a goal THEN exit successfully
{(8) IF N(i) has no more open nodes
THEN remove N(i)

(9) FOR all the successors n’ to n
(10) IF N(n'.type) does not already exist
(11) THEN
(12) Create and place N(n'.type) on OPEN
(13) END IF
(14) Place n’ on N{(n'.type)

if it is not already there and

calculate F(N(n’.type))
(15)END FOR
(16)Go to line (3)

There is no CLOSED set despite of the fact that A}, is
actually A*. This is for clarity. In this paper, we are mostly
interested in cases where the heuristic H(/V;) is monotone
and thus no reopenings are necessary, see e.g. [5] (p. 83).
If N; does not have any open nodes, then line (8) *“‘closes”
it. The meta paths are not explicitly formed, since N; and
its only successor N are not implemented as separate sets:
N| = N; U n; after the insertion of n;, in line (14).

Node expansions in the sets N; and successor genera-
tions, on line (6), can be done by different algorithms A;
if wanted. There can also be only a single algorithm for
expanding all the nodes in G. Line (14) can be replaced
by “(14°) Place n’ on N(n’.type) if it is not already in any
N()...”. Then one node is only in one N;. In general, a
node can have many types if the types are implicitly defined.

Perhaps the simplest case here is that if the expansion of a
node n; in G; produces a successor 1 in G; i # j, thenn;
is the first node in IV;. While N; does not contain any nodes,
we can think that “H (V;) = 0”. When A}, has placed the
first node n; on N;, then H(N;) is monotone if h{n;) is
monotone (if G; has a goal node). Hence Theorem 4. holds
here. If A}, finds the goal node in G first, then it has
minimized the number of the expanded (weighted) nodes in
G with the start node n;.

The above case showed that, in general, it is possible that
search processes on different subgraphs can start at different
times. If N; gets its first node after the start node s in G has
been expanded, then we have to set F'(N;) > min{F(N;) |
i # j} where every N; already contains at least one node.
This is to keep the values F' monotone.

Suppose that on line (8) of the pseudo code, N} has no
open nodes left. Then A}, deletes V. Assume next that a
node 7 in Gy, is generated. Now A}, has to create a new
set Ny, for ny. Let us call this “Property A ”.

If A}, did not recreated N; and placed ny on the old
N, then problems would occur. Namely, if A}, finds later
a goal node first in G, then it does not necessarily minimize
the number of the (weighted) expanded nodes in G¢. An
example of this can be found easily. In other words, A},
is not be admissible on MI4p in equation (2). Then we
cannot tell much of its optimality either. This does not mean,
however, that an algorithm like A without “Property A"
would necessarily behave badly in real situations.

DECISION ANALYSIS 143

It may happen that A}, recreates Ny so late that it con-
tains only a few nodes before A}, finds a goal in Gy.
Now A}, has actually minimized the (weighted) expanded
nodes in a subgraph of G. This may be disappointing since
we originally wanted to minimize the nodes in G. How-
ever, this effect can be compensated somewhat by setting
the starting value G(Ni) and thus F'(Ny) high enough, as
we already discussed above.

Let us next generalize Theorem 4. If a goal node is in a
subgraph G;, then h(n;) estimates the distance from n; to
it. If G; does not contain any goal node, then A(n;) = 0 or
H(N;) is estimated in some other way.

Theorem 5. Assume that A}, uses the nodes and the meta
paths in Definitions 2. and 3. Let it be possible for path
candidates on G to have nodes in different subgraphs G;
(i = 1,2,..r). Furthermore, let A > 0 be monotone if G;
contains a goal node and A = 0 if G; has no goal nodes.

Assume that “Property A” holds. Moreover, assume that
h(n}) > H(N;) — C(Nj, Nj) where n/; is the immediate
successor to n; for all i # j when A} places n} on N;.
C(Nj, N}) = w(n}) = e{ns,).

Now A}, using the F(NV;) in Theorem 4. is admissi-
ble on MI4p. A}, is also the optimal resource allocation
policy for node expansions among the G ;s according to Def-
inition 1.

Proof. Let A}, expand a node n; € N; and place its
successor n; as an open node on N;. If i = j then Theorem
4. holds since h is monotone. If i # j and n} is the first
node in IV; then Theorem 4. holds, too.

Assume that i # j and n} is not the first node in Nj.
If h(n;) > H(NJ) = mm{h(mJ) | m; € NJ} then
H(N;) = H(N;) and H is monotone. On the other hand,
if h(nj) < H(N;) then H(N}) = h(nj;) > H(N;) —
C(Nj, N}), which follows from the last assumption above.

Theorem 1. implies the rest. O

A necessary assumption of Theorem 5. is: h(n}) >
H(N;) — C(Nj, N}) when A}, places n’, a successor to
n;, on N;. This is true if i = j because of the monotonicity
of h, as Theorem 4. already showed. However, the valid-
ity of the assumption is not at all clear when ¢ # j. The
assumption means that A}, can not place all the nodes on
N; whose father is not in IV;. Only those nodes are accepted
whose h values are not small enough. Usually, we can check
this fact only after the generation of n; when A}, has de-
termined its type j.

A partial solution to the above problem is to let the al-
gorithms A; avoid node expansions that violate the assump-
tion as long as it is possible. However, at some point we
may have to violate the assumption unless the solution path
cannot be found in another way.

Another solution is that when A3}, observes that the as-
sumption does not hold then it creates a new set whose first
node is the one that otherwise would have caused the prob-
lem. However, we may now face the problems discussed a
few paragraphs above.

144 FLAIRS-2001

The violation of the above assumption means that 4},
has a heuristic H that is not monotone. If we can keep
H admissible, then A}, is optimal over the breadth-first
strategy (having H = 0) by Theorem 2. It can happen that
h(n}) << H(Nj) so that H(N;) is not even admissible. If
this happens, then nothing can be said about the optimality
of A*MG .

Conclusions

Suppose that we have a division of the path finding prob-
lem into subproblems. This is done by dividing the original
search graph into subgraphs. In general, every subgraph do
not have to contain the start and goal nodes. Hence a so-
lution path can have nodes in several subgraphs. In other
words, the smaller subproblems are not required to be solv-
able independently of each other. Every subproblem can
have a different algorithm for expanding its nodes.

In this paper, we showed that A* can be used as a resource
allocation policy for node expansions among the subgraphs.
In some cases, A* is the optimal resource allocation algo-
rithm. This requires the possibility of underestimating the
number of the nodes still to be expanded in each subgraph
before a solution path is found, see Theorem 3.

If every path candidate can be only on a single sub-
graph, then one method of the estimation is to use a mono-
tone heuristic assigned to the nodes in the original graph.
The monotonicity guarantees the existence of an optimal re-
source allocation policy (A*), see Theorem 4.

If path candidates can have nodes in several subgraphs,
then the situation is more complicated. Additional assump-
tions are needed for the existence of an optimal resource al-
location policy, see Theorem 5. It is not always possible to
know a priori whether these constraints is satisfied or not.

References

[1] Antti Autere. Hierarchical a™ based path planning - a case
study. In 2nd Int. ICSC Symposium on Engineering of Intel-
ligent Systems (EIS’2000), Univ. of Paisley, Scotland, UK.,
June 27 - 30 2000. ISBN 3-906454-21-5, ISBN 3-906454-23-
1.

[2] Rina Dechter and Judea Pearl. The optimality of a revisited. In
3rd AAAI Natl. Conf. on Al, Washington D.C., 1983.

[3]1 PE. Hart, N.J. Nilsson, and B. Raphael. A formal basis for the
heuristic determination of minimum cost paths. IEEE Trans.
Systems Science and Cybernetics, 2:100-107, 1968.

[4] N. J. Nilsson. Principles of Artificial Intelligence. Palo Alto,
Calif.:Tioga, 1980.

[S] Judea Pearl. Heuristics: Intelligent Search Strategies for Com-
puter Problem Solving. Addison-Wesley, 1984.

