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Abstract
We review and extend the qualitative relationships
about the informational relevance of variables in
graphical decision models based on conditional
independencies revealed through graphical separations
of nodes from nodes representing utility on outcomes.
We exploit these qualitative relationships to generate
non-numerical graphical procedures for identifying
partial orderings over chance variables in a decision
model in terms of their informational relevance. We
describe an efficient algorithm based on a consideration
of local properties of a property we refer to as u-
separation. Finally, we present results of computational
efficiencies gained via the application of the new
policies, based on analyses of sample networks with
different degrees of connectivity.

1 Introduction
The expected value of perfect information (EVPI) is the
value of making an observation before taking action under
uncertainty. EVPI is an important concept in decision-
analytic consultation as well as automated decision-
support systems that recommend the best evidence to
collect, trading off the cost and benefits of observations
and tests. The idea of economic evaluation of information
in decision making was first introduced by Howard (1966,
1967).

In recent years, there has been great interest in
developing schemes for computing the value of
information (VOI). Exact methods for computing the
value of information have been explored (Ezawa, 1994;
Howard and Matheson, 1981; and Shacher, 1990).
Unfortunately, the computational complexity of such
exact computation of EVPI in a general decision model
with any general utility function is known to be
intractable. The intractability of EVPI computation has
motivated researchers to explore a variety of quantitative
approximations, including myopic, iterative one-step
look-ahead procedures (Gorry, 1973; Heckerman, Horvitz
& Nathwani, 1992; Dittmer and Jensen, 1997).

We have sought to extend methods for exact and
approximate computation of VOI by pursuing
opportunities for leveraging qualitative analyses of the
value of information. We shall focus on such qualitative
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evaluation in an influence diagram. In many applications,
it is reasonable to bypass the exact numerical computation
of the VOI and to instead seek to identify an ordering of
variables by their value of information. For example, an
ordering over the VOI can be employed in conjunction
with cost of information in normative decision systems to
determine the most cost effective evidence to collect.

In our earlier related work (Poh & Horvitz, 1996), 
have derived qualitative relationships about the
information relevance of chance variables in graphical
decision models based on the consideration of the
topology of the models. We identified dominance
relations for the EVPI of chance variables in terms of the
position and relationships among variables. We also have
found that the EVPIs of chance nodes can be ordered
based on conditional independence relationships among
the chance nodes and the value node. We outlined an
algorithm for obtaining such a partial ordering of EVPI of
chance nodes of influence diagrams that are expressed in
canonical form.

In this paper we review earlier work and report new
results on topological relationships among variables in a
graphical decision problem with regards to the VOI. After
reviewing earlier work, and presenting extensions, we
shall describe studies of the performance of an algorithm
that harnesses the new results.

To demonstrate the effectiveness of our algorithm, we
have conducted a series of runs on a large number of
networks generated randomly. The networks tested are
characterized by the number of nodes and the density of
the connectivity among nodes. The results of these
studies demonstrate that the method can deliver a
dramatic improvement in the performance of the
algorithm over the previous version. In contrast to
previous algorithms, the approach produced tractable
rnntimes even for large networks of up to 60.

This paper is organized as follows: In Section 2, we
review the basic ordering relations for EVPI on chance
nodes and show its application to an example. In Section
3, we discuss several extensions to the qualitative
relations and present an algorithm which incorporates
these extensions. In Section 4, we present the results
obtained on a series of networks of varying sizes and
density. Finally, in Section 5, we conclude and provide
potential directions for extending the method.

DECISION ANALYSIS 155

From: FLAIRS-01 Proceedings. Copyright © 2001, AAAI (www.aaai.org). All rights reserved. 



2 Value of Information and Conditional
Independence

We shall first examine several qualitative relationships
about the information relevance of variables in graphical
decision models. We will review some results obtained
previously and present some extensions. We shall focus
on models in canonical form. In general, any influence
diagrams can be converted to canonical form, a
formulation where all chance nodes that are descendants
of one or more decision nodes are deterministic nodes
(Heckerman & Shachter, 1995).

2.1 Basic information relevance ordering
relations

Let M = (C, D, V, E) be a decision model where C is the
set of chance nodes, D the set of decision nodes, V the
value node, and E c (C u D) x (C u D u { V}) is the 
of directed arcs. We denote the expected value of
information for observing the value of chance node X ~ C
before action ,4 e D by EVPIu(A I X).

We have shown previously (Poh & Horvitz, 1996) that
chance nodes that are not relevant to the value node given
the action have zero value of information.

We have also established the basic relations concerning
the possible ordering of EVPI for two chance nodes in a
graphical decision model based on conditional
independence of the value node of one chance node given
the other:

Those results can bc generalized to the joint value of
perfect information of a set of nodes by replacing X and Y
with sets. The conditional independence relations
required for identification of the ordering of EVPI can be
performed with the notion of d-separation (Pearl 1988,
Pearl et al 1990).

An equivalent graphical procedure for identification of
conditional independence relations makes use of the
notion of u-separation (The notion of u-separation can be
found in Castillo et al, 1997). Given a direct acyclic graph
and three disjoint sets of nodes X, Y, and Z, we first
moralize the smallest subgraph containing X, Y and Z and
their ancestral nodes. If Z u-separates X and Y in the
moralized graph, then Z d-separates X and Y in the
original directed graph; otherwise Z does not d-separate X
and Y.

2.2 Example

Figure 1 shows the graphical model of a sample
decision problem. The topology of the network is
adopted from the car diagnosis example (Norsys 1998).
By applying the d-separation criterion for the ordering of
EVPI values, we obtain the ordering network as shown in
Figure 2. Here an arc between two nodes, for example, A

B, indicates EVPI(D [A) < EVPI(D [ B).
We shall leverage a concept referred to as a barren

node. Shachter (1986) introduced the notion of barren
nodes in influence diagram evaluation. Barren nodes are

those other than the value node which have directed arcs
into them but not out of them. We note that node l0 is a
barren node. Hence, its EVPI is bounded by the EVPI on
its parent node 4. This is not a very densely linked
graphical decision model, and we obtained several EVPI
orderings that indicate the relative ranking of the
importance of information.

Figure !: Influence diagram for Example I.

G

Q. ®
Figure 2: The partial ordering of EVPI for Example i

2.3 Computational approaches
In practice, we may generate a partial ordering of EVPI
by engaging in a pairwise comparison of nodes and
checking for d-separation of one node from the value
node by the other. We call this method the pairwise-
comparison approach. This algorithm does not exploit the
topological structure of the network to gain efficiency.
We shall now introduce a new approach to the
identification of partial ordering of EVPI in graphical
decision model by identifying barren nodes and extending
the u-separation relation to more encompassing
neighborhoods. We refer to the new algorithm as u-
separation extension.

3 Efficient Identification of EVPI Orderings
In this section, we first describe a number of extensions
on the graphical properties of information relevance for
chance nodes. Then, we shall describe an algorithm that
exploits these new results.

3.1 Treatment of Barren nodes
Omission of barren nodes from a graphical decision
model has no effect on the optimal decision policy.
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Furthermore, their VOI is always bounded above by the
joint VOI of their direct predecessors.

Theorem 1. In a canonical decision model M, let B be a
barren node and n(B) be the set of direct predecessors of
B, and A be a decision node. Then EVPIM (A f B) <
EVPIu (A In(B)).

Proof’. The result follows from the fact that since a
barren node is a sink node with no arc coming out of it, it
follows that it is always d-separated by all its parent nodes
from the value node (see Figure 3). We can also infer the
result from the so-called Markov property of a DAG,
since the value is always a non-descendant of any barren
nodes and the required conditional independent relation
must holds. []

M- n(B)-{B} "’"

,, ~(B) ,
I i

Figure 3: EVPI of barren nodes are always bounded by those
of their parents

Hence in trying to obtain an EVPI ordering of the
chance nodes in a decision model we may first remove all
the barren nodes because their EVPI is always less than
those of their respective parents. Furthermore, removing
the barren nodes has no influence on the ordering of other
nodes since barren nodes are not in the ancestral sets of
any other nodes. After the EVPI ordering of all non-
barren nodes has been achieved, we may insert the barren
nodes into the ordering to complete the analysis.

3.2 Neighborhood Closure property of u-
separation with the value node

The Neighborhood Closure of u-separation with the
value node allows us to infer u-separation relations in a
neighborhood thereby eliminating the need to explicitly
check for u-separation once u-separation of a single node
is established in a neighborhood of a cluster of nodes.

Theorem 2. Let G be the moralized graph of a
graphical decision model with the decision node removed.
Let node X be chance node, node Y be a neighbor of Z in
graph G. Then Y is u-separated from the value node V by
X if and only if Z is u-separated from the value node V by
X.

Proof’. Referring to Figure 4, suppose Y is u-separated
from the value node g by X. Then every path from Y to V
passes through X, and any path from Z to V must is either
pass through both Y and X or only X alone. No path can
run from Z to V without going through X for this will
violate the u-separation of Y from V by X. Hence Z is
separated from V by X. The converse is also true by

symmetry. That is, if Z is u-separated from V by X, then Y
is u-separated by V by X. 17

The above result allows us to check the u-separation of
any node with V and if it is found to be true, to recursively
add the property to all of their direct neighbors. For
example, in the network shown in Figure 5, if it is
established that Y is u-separated by X from V, then we can
infer that all the shaded nodes will also be u-separated by
X from V. We state this in the following theorem:

t~ (5

6
)

<3>
Figure 4: Extension of u-separation from value node to a

direct neighbor.

Theorem 3. Let G be the moralized graph of a
graphical decision model with the decision node removed.
If in G, a chance Y is u-separated by another chance node
X from the value node, then the maximal connected sub-
graph containing Y is also u-separated from V by X.

Proof’. The result follows from the recursive application
of Theorem 2.

(2

Figure 5. U-separation of Y from V by X can be extended to
the maximal connected sub-graph containing Y

3.3 An Algorithm for identifying EVPI
orderings

Input: An influence diagram M.
Output: An EVPI ordering set 12of the influence diagram.

I. Convert the network M into canonical form if it is not
already so.

2. Drop all the decision nodes in M.
3. Identify the ancestral sub-network of the value node V.
4. Moralize the ancestral sub-network.
5. Let g2=~.
6. Let N (== C, the set of chance nodes in M.
7. WhileN#~ do
8. Mark all nodes in N as "unvisited"
9. Pick a node X e N
I0. Let N ~---N\ {X}
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I I. For each node Y e Adj(X) 
12. If Y is "unvisited" and Y ¢ X then
13. Mark node Yas "visited".
14. If Y is u-separated by V given X then
15. Add the ordering {X < Y} to
16. Recursively add all {Z < Y} to fl where Z

Adj(Y) and Z is "unvisited"
] 7. Else
18. Mark all nodes Z ~ Adj(Y) and Z#Xas

"visited".
19. End if
20. End if
21. End For
22. End While
23. For each barren node B, add {B < P} to Q where P is a

parent of B in M.
24. Output

Notice that the barren nodes in this algorithm will be
excluded from the ancestral sub-network being processed.
The algorithm goes through every chance node and
considers it as a separator node. If a neighboring node is
found to be u-separated by the current node from the
value node, the EVPI ordering is added to the list, and
Theorem 2 is applied recursively in a depth-first manner
to include the ordering of adjacent nodes compared with
the current node. Figure 6 shows the adjacent node u-
separation probing scheme.

=

<2>
Figure 6. Propagation of EVPI from Y to its neighbourhood.

We shall now provide an estimate of the runtime
complexity of u-separation extension and compare it to
the pairwise-comparison algorithm. For an n-node
network (n includes the value node), the pairwise-
comparison algorithm requires (n-l)(n-2) checks 
undirected conditional independence. The worst-case
complexity for depth-first search is O (n-’); by clever
implementation the computational time for checking
conditional independence thus will be O (n"). Hence the
overall computational time of the pairwise-comparison
algorithm is O (n4).

The new algorithm performs only (n-l) number of 
separation checks. Hence the computational time is O(nJ).
We therefore can typically expect a speed up of about n
times compared with the pairwise-comparison procedure.
Since real world networks are often very large, this speed
up proportion to the network scale may be significant.

4 Computational Evaluation of the

Algorithm

We implemented the u-separation extension algorithm
and applied it to a variety of problems.

4.1 Applications of the Algorithm to Sample

Problem

Let us first explore the enhanced performance of u-
separation extension on Example 1. The run time speed
up ratio of the u-separation extension algorithm over the
pairwise-comparison approach is 1.67 for this 18-node
simple example. We observed a decrease in run times for
the new algorithm over the naive scheme for this
example.

4.2 More Extensive Studies

In order to perform a comprehensive computational
evaluation of the algorithm and to study the effect of
specific topologies on its performance, we generated a
series of networks with different sizes and connectivity.
Two parameters that describe the policy for generating
networks are (1) the number of nodes in the network
which varies between 20 and 60 nodes, and (2) 
branching index which is the probability that any two
nodes in the network are connected by a directed arc. A
branching probability close to zero will generate a very
sparse network while a branching probability close to
unity will generate a densely connected network. For
example, a branching probability of 0.2 on a 20-node
network will have, on the average, 19"0.2 or 3.8 number
of arcs connected to any node.

One of the experiments is applying both algorithms to a
total of 13 networks of 20 nodes each. The branching
probability was varied between 0.15 and 0.20 producing
an average connectivity of 2.85 to 3.8 representing the
typical numbers found in practical networks. In all cases,
a significant speed up was obtained by the new algorithm
when compared with the na’iv¢ scheme; the average speed
up ratio for 20-node network is 4.55 times. We also
observe that the runtime generally increases with
increases in the connectivity density.

We extended the experiment to larger networks of 30 to
60 nodes. Figure 7 shows the plot of the ratio of the
runtime for the two algorithms. The graphed data is the
average ratio for different numbered networks.

From above we observed that the algorithm generally
provides a significant improvement over the nai’ve
approach. However, the performance for individual
network depends on the number of nodes, its structure,
and the connection density. We also note that the average
speed up is roughly proportional to the number of nodes
in the network when the latter is large. This is consistent
with our earlier analysis on the runtime complexity of
algorithm compared to the naive method.
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5 Summary and Conclusion

We have described an algorithra for the identification of
partial ordering of EVPI for chance nodes in graphical
decision models. The algorithm is based on non-
numerical graphical analysis based on the idea of u-
separation.

We have tested the algorithm on a number of networks
of sizes varying from 20 to 60 nodes and in all cases,
satisfactory runtime were obtained. We achieved a
significant speed up over a naive approach proposed
previously. Knowledge of EVPI orderings of the chance
nodes in a graphical decision network can help decision
analysts and automated decision systems weight the
importance or information relevance of each node and
direct information-gathering efforts to variables with the
highest expected payoffs. We believe that the algorithm
described in this paper can serve the purpose well.

A limitation of our approach is that it only generates a
partial ordering. This is the price for considering only
qualitative properties. However, the trade-off in
completeness is well spent since the exact numerical
computation of EVPI for all nodes is known to be
intractable.

We have focused on studies with medium-sized
examples. For larger networks, it may be promising to
employ methods that decompose the network into several
subnets to be individually processed. The partial orderings
obtained may then be merged. We also observed that
clusters which are densely connected tend to produce very
sparse partial ordering graph, i.e., nodes that are densely
connected tend to resist yielding an ordering with our
method. While this may limit the usefulness of our
approach, we can exploit this property by clustering such
densely connected nodes as one group and treating it as a
single node. We can then use our algorithm to find partial
orderings of group of nodes. Another possible extension
of our approach is to consider some heuristic
classification of decision models based on their network
topology and then to apply different types of search
strategies based on such a classification.
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