From: FLAIRS-01 Proceedings. Copyright © 2001, AAAI (www.aaai.org). All rights reserved.

Evolutionary Search for Matrix Multiplication Algorithms

John F. Kolen & Phillip Bruce
Institute of Human and Machine Cognition
University of West Florida
Pensacola, Florida 32501
{jkolen, pbruce}@ai.uwf.edu

Abstract

This paper addresses the problem of algorithm discov-
ery, via evolutionary search, in the context of matrix
multiplication. The traditional multiplication algorithm
requires O(n>) multiplications for square matrices of or-
der n. Strassen (Strassen 1969) discovered a recursive
matrix multiplication algorithm requiring only seven
multiplications at each level, resulting in a runtime of
O(n'%7), or O(n?%'). We have been able to replicate
this discovery using evolutionary search (Fogel 1995).
The paper presents the representational schema, evalu-
ation criteria, and evolution mechanisms employed dur-
ing search. The most crucial decision was removing
the determination of coefficients used to combine the
product terms in the final addition steps from the search
space and calculating them directly from the specified
multiplications. Extending this methodology from 2 x 2
submatrices to algorithms using 3 x 3 decompositions is
also discussed.

Introduction

Matrix multiplication is an operation that underlies many
computer application areas such as simulation, data analy-
sis, and signal processing. The traditional algorithm (z;; =
Y. xiYk;) for multiplying two square matrices of order x re-
quires O(n®) multiplications. The runtime complexity of
the standard algorithm is not minimal. By casting the prob-
lem recursively, Strassen (Strassen 1969) has shown that it is
possible to reduce the number of multiplications to O(n'¢"),
or O(n?#1). This feat was accomplished by performing only
seven, instead of the requisite eight, multiplications on each
recursion.

An asymptotically optimal matrix multiplication algo-
rithm has yet to be discovered. The best non-commutative
algorithm to date requires O(n?>376) running time (Cop-
persmith & Winograd 1987). Even the lower bounds for
this problem’s complexity has yet to extend past O(n?)
(Winograd 1971). We have embarked on a research project
that will employ AI techniques to discover efficient ma-
trix multiplication algorithms. Recall that Strassen’s algo-
rithm to multiply two n x n matrices, Z = XY, is a collec-
tions of seven multiplications (g;) that are combined in four

Copyright © 2001, American Association for Artificial Intelli-
gence (Www.aaai.org). All rights reserved.

weighted summations (z;). The multiplications are of the
form (g; = (Taijx; X Lbiyr) where x; and y, are the sub-
matrices of the original matrices, and a; and by, are their
inclusion coefficients. These inclusion coefficients were ei-
ther negative one, zero, or one. The summations are merely
weighted sums of the g; terms (3, ¢j;9;). Thus, our search for
algorithms takes us to the space of the inclusion and combin-
ing coefficients. The size of the search space was reduced
when we discovered that the combining coefficients could
be calculated from a given set of inclusion coefficients. We
selected an evolutionary approach (Fogel 1995) to explore
the space of 2 x 2 algorithms. The current experiments will
validate our approach, as we later look for completely novel
algorithms involving larger decomposition matrices.

The remainder of the paper describes our efforts to date.
First, we address representational issues that impact our
search. The specifics of the evolutionary algorithm that ex-
plores the representational space are then described. The
results of our experiments on the 2 x 2 case are presented.
Finally, we address the implications of this work and what
steps are necessary to progress to effectively searching 3 x 3
decompositions for novel algorithms.

Algorithm Representation

Given a dimension, 8, and two & x & matrices, X and Y,
we wish to find an algorithm to compute Z = X x Y us-
ing ¢ multiplication steps. This al%orithm can be applied to
square matrices with dimension 8* via recursive decompo-
sition. Each matrix will be decomposed into 82 submatrices
and the matrix operations will manipulate these submatri-
ces instead of scalars. For example, one can construct a re-
cursive algorithm for 2% x 2% matrices from the formula for
multiplying two 2 x 2 matrices that requires eight multipli-
cations.

Z;y = XnYu+Xnby
Z;y = XuYi+XppYn a)
Zy1 = Xyl +Xnb
Zyn = XnYn+Xntn

In Equation 1, the X terms are the square submatrices of
X. These equations can be recursively applied on the mul-
tiplication of the submatrices as well. The recursion will
bottom out upon reaching 2 x 2 matrices. At this point, the

GENETIC ALGORITHMS 161

XuYn Xuha XuYa XuYr Xpphn X1
1 0 0 0 0 -1

Figure 1: The vector representation for X;1Y1; —X21Y11is | 1

equations will be operating on scalars instead of submatri-
ces. The runtime, T'(n), for multiplying two n X n matri-
ces is T'(n) = 87 (n/2) + O(n?). Analysis of the recurrence
equation shows that this algorithm will run in O(n3) time.!

In this paper, we shall be concerned with the special case
of 8 =2 and ¢ = 7. Strassen (Strassen 1969) addressed this
case and was able to rewrite these equations in a sum of
products form (Equation 2).

@1 = (Xn+Xn)x(Y+Yn)
@2 = (Xa+Xn)*Yn

a3 = Xu*Yiz2—-Yn)

gs = Xp*(Ya—-Yy)

gs = (Xu-+Xn)x«rn

g6 = Xaa—Xu)*(Yn+ha) ¥))]
g1 = (Xi2—Xn)*(Yar+Ya2)
Zii = q1+4qs—qs+q

Zy = q3+gs

Z;1 = q2+4qa

Zyn = q+q93—q2+qs

Note that in all cases, the multiplication operators take a
subset of values from X and multiply them with a subset
from Y. This constraint arises from the observation that no
Z submatrix formula contains quadratic terms solely from
one multiplicand or the other (i.e. no X;; X5, terms appear).
In addition, each term present in the product of sums (POS),
q., and sum of products (SOP), Z_, is multiplied by a coeffi-
cient of either —1 or 1. The representation scheme described
below will preserve these two constraints.

We can define the search space that satisfies these con-
straints mathematically. Consider the & x 8 matrices A",
B" and C” for re{1,...,0} such that the following equation
holds for all n,m € {1,...,8}:

1 g & 3
Y XpYom = X.(Y, ALX)(Y, Bu¥u)Crn (3)
p=1 r=1 i,j=1 k=1

The A" and B" matrices identify which terms of X and ¥
to include in the calculation of the left and right side of the
product operation. The C" matrix controls the summation of
the products. In practice, the elements of these matrices are
taken from the same ring defining X and Y. Strassen’s algo-
rithm, for example, has A” and B” with elements taken from
the set {—1,0,1}. Multiplications by scalars is asymptoti-
cally equivalent to adding two matrices and thus are ignored
in the multiplication count. Originally, we limited the ele-
ments of A", B”, and C” to the set {—1,0,1}.

Initial experiments within the search space over A’, B',
and C’, as defined above, yielded dismal results. We found

1For simplicity of analysis, we assume that dimension of the
matrices is a power of two.

162 FLAIRS-2001

XuYn XuYz XnYar XnYn
0 0 0 0]

0000O0OO0OCONS-1000O0ODO90OV0TO 0]

that maintaining the relationship between the inclusion and
combination coefficients was difficult, if not impossible.
This difficulty arises from the coupling of these parameters.
In the explanation that follows, we show that it is possible to
eliminate the C" matrices from the search space by directly
calculating it from the contents of A" and B". As we shall see
below, the same calculation turns out to yield an excellent
objective function. Consider then an alternate formulation
of Equation 3:

] (]]
Zum= D, Xnp¥pm = 2.(Y., DjjuXij¥u)Con (4
p=1 =1 i,j k=l

The new term, Dy, the outer product of A" and B', iden-
tifies the contribution of a pair of terms drawn from X and
Y. This selection process can be abstracted by considering
the group of elements {X;;Yiu}; ; 1e(s,..5) With the addition
operation to be a vector space over the field of rational coef-
ficients. Under this interpretation Equation 4 states that for
any n and m a certain vector 5y, whose elements are either
zero or one, is equal to a linear combination of ¢ vectors.
Figure illustrates the vector representation schema with the
representation for the product term Xi1Y;; — Xo; Y. Defin-
ing the matrix D to be the 8* x ¢ matrix whose columns
correspond to the vectors A, and defining Cm, to be the
o—dimensional vector whose elements are C},,, we may
then express Equation 5 as the following linear system:

Smn = ACmn)

Or expressed for all m,n € {1, ...,8}:

§S=AC 6)

where S is a matrix depending only on & and whose ele-
ments are each members of the set {0,1}. If we then spec-
ify values for A we may attempt to solve Equation 6 for C.
Figure illustrates the matrices constructed for the products
found in Strassen’s original algorithm (Equation 2). If a so-
lution is found, then we have we have AJ; and By, satisfying
Equation 3 and a matrix multiplication algorithm with the
desired properties.

We placed additional restrictions on the representations
to contract the search space. For instance, it is clear that the
matrices A" and B” must have at least one non-zero entry in
order to yield a solution to Equation 3. It is also true that
in Strassen’s algorithm, these matrices never have more than
two entries so we might benefit from placing an upper bound
on the number of non-zero elements. While we considered
utilizing this constraint early in our work, we found that it
was unnecessary to constrain the search space in this man-
ner. Furthermore, multiplying either of these matrices by —1
has no effect in that this negation can be instantiated during

"1 0007 [10 0 0 0 -1 0
0100 00 1 0 0 -1 0
0 000 00 0 0 0 0 O
0 000 10 -1 01 0 0
0 000 00 0 0 0 0 O
0000 00 0 0 0 O O
1000 00 0 0 0 0 1
0100f_|0o0 0 0 1 0 1|,
0010|T]01 0 0 0 1 O
0001 00 0 0 0 1 O
0000 00 0 0 0 0 O
0000 00 0 0 0 0 O
0000 11 0 -1 0 0 O
0000 00 0 0 0 0 O
0010 00 0 1 0 0 -1
lo001] L[10 0 0 0 0 -1

Figure 2: The system of equations corresponding to
Strassen’s original algorithm (Equation 2). The sixteen rows
correspond to the sixteen possible pairings of submatrices
from X and Y. The four columns of the matrix on the right
hand side of the equal sign correspond to the four submatri-
ces of the resulting matrix. The seven columns of the other
matrix correspond to the seven products. C is a 7 x 4 matrix
of unknown combination coefficients.

the calculation C". Restricting the first non-zero entry to one
further reduces the search space. Our experiments below re-
flect the application of these last two reduction techniques.

Searching for Algorithms

Given the algorithmic space described above, we now ad-
dress the problem of search. We selected an evolutionary
approach as our search tool (Fogel 1995). The justification
for this choice is two—fold. First, we felt that a population—
based approach would work well for this task. Second, we
wanted to operate directly upon the values defining our al-
gorithms. This latter decision allows us to avoid problems
associated with bit encodings used in genetic algorithms.

An individual is consists of the sets containing all the A"
and B" matrices. The population contains a large number
of such individuals. A reproductive generation consists of
the following steps. First, pairs of individuals from the pop-
uvlation are selected for reproduction according to their fit-
ness. The newborn individuals undergo mutation and are
then ranked with the older population by the fitness function
and those with high fitness (see below) scores are removed
from the population. Generations are repeated until either a
satisfactory algorithm is found, or the number of generations
reaches a predefined stopping value.

The fitness function must somehow estimate how close
the individual is to actually computing the matrix multipli-
cation. Using the vector space model described in the pre-
vious section, we define an objective function based on the
nearness of the matrix S of Equation 6 to the range of the
transformation A. If the system in Equation 6 is solvable,
then the goal has been reached. In the likely event that the
matrix is unsolvable, we turn to an objective function f that

measures how close it is to a solution. A norm is then esti-
mated for the matrix AC — S. More precisely, we define it to
be the function

£(4) = min||AX 5| @

where the norm is taken to be the Euclidean norm. Note
that such a function is 0 if and only if A corresponds to a
solution to the problem. The lower the score its value, the
closer the individual is to being a solution.

If we assume that A is not the zero matrix, the degenerate
case, then because f is strictly convex, bounded below, and
not bounded above, any critical point is a minimizer. Be-
cause the gradient of f is ATAX — ATS, we must therefore
solve the system:

ATAX =ATS ®

for X in order to find a minimum of f. Thus the evaluation
of f (Equation 9) for any given X consists of a few basic
matrix calculations and is reasonably fast.

F(A) = |A(ATA) 'ATs -5 9

The objective function, f, described above captures the
main features of our goal states. We found, however, that the
search mechanism needed additional information in order to
discover solutions to this problem. The fitness function is
the objective function adjusted in two ways. First, if an in-
dividual’s matrix is sparse, then the score is increased. In-
dividuals with zero rows in their A and B matrices will also
incur a similar penalty. Both of these augmentations help
the evolutionary mechanism quickly escape the flat regions
of the objective function that are often found with randomly
generated individuals. Note that fit individuals have low fit-
ness scores, zero indicating a working algorithm.

While the fitness function described above provides score
for a given individual, we allow the actual fitness score for
the individual changes over time. That is, each generation
an individual survives, its fitness is increased by a constant
amount. This serves to keep potentially good starting points
in the population, but eventually removes them, as fitness
increases, to make room for younger individuals.

Having defined a fitness function, we then define opera-
tions for the creation of new individuals. The simplest op-
eration is the creation of an individual whose chromosomes
have A" and B" matrices with randomly chosen entries. We
call this operation immigration. It serves to increase the di-
versity of the population and is used to initialize the popula-
tion.

The reproduction of two individuals, or cross-breeding,
consists of the creation of two new individuals whose
chromosomes are derived from the parent using uniform
crossover (Ackley 1987; Syswerda 1989). Consider the
chromosome to be the serialization of A”’s and B™’s. The
children are constructed by walking down the two chromo-
somes of the parents and copy the current genome, an A"
or a B’, from one parent to either child and then copying
the corresponding genome from the other parent to the other
child. Probability of a child receiving a genome from the

GENETIC ALGORITHMS 163

first parent is 0.5. Thus, the children receive a complemen-
tary pairing of their parent’s genetic material while main-
taining integrity of the the low-level sums (the subsets from
selected from matrices A and B).

For any given individual P, mutation is the creation of a
new individual O whose chromosomes are identical to those
of P, except for the probabilistic changing of each element
in the A" and B matrices to one of the two other possible
values. The probability of any element changing is such that
the expected number of changed elements is fairly small,
though it increases with the age of P in order to promote
diversity in the population. The restrictions on the struc-
ture of A” and B', first non-zero element is positive and at
least one non-zero element, described above are maintained
during this process. The second type of mutation focuses
the attention of this mechanism on problematic areas of the
chromosome.

Thus, our evolutionary algorithm for searching the space
matrix multiplication methods consists of the following
steps. First, a population of immigrants is created. New
members of the population are created using cross-over and
mutation. Cross-over parents are selected according to the
fitness score. The less fit individuals are then removed from
the population.

Results

Our evolutionary search was performed under the following
conditions. The base population size was three hundred in-
dividuals. Cross-breeding yielded three hundred new mem-
bers from 150 pairings. An additional three hundred individ-
uvals were created from simple mutation of existing individ-
uals. On each generation, ten new immigrants were added to
increase genetic diversity of the population. The base mu-
tation probability, that is, the probability of a single gene
mutating was 0.07. This probability increased by 0.07 for
every generation an individual remained in the population.
A penalty of 0.2 was incurred to the fitness score for each
generation during the life span of the individual. The maxi-
mum non-zero coefficients in the sum of POS was four. The
number of non-zero coefficients in the POS was not limited.

We employed a restart method. After 550 iterations, the
search algorithm empties the population and starts with a
new set of randomly generated individuals. After 24 restarts,
a solution was found after 91 generations. It consisted of
seven multiplications and eighteen additions and is of the
same complexity as Strassen’s decomposition (Equation 2).

g = Xpu*(N2+Yn)

g2 = (Xii—Xn2)*Yn

g3 = (Xi2—Xa)*(Yn1—Y2)
gs = (Xa1—Xn)*Yn

gs = (X12—Xn)*(Y21+Y22)
g6 = (Xu—Xa)*(Yn+ha) (10)
a1 = Xpx(Y11+Ya)

Zy = @t+q@

Ziy = —q1—q2—q3+4gs
Zy = —q3tqa—qs+q1
Zyn = q1—q4

164 FLAIRS-2001

Conclusion

The discovery of a recursive matrix multiplication algo-
rithm was described above. Since the original discovery,
other schemes have presented themselves, all within similar
time frame and solution complexity. Our automated search
method differs from that used by Strassen. Computer search,
however, is not novel in this area. Brent (Brent 1970) used
a least-squares minimization technique on a function whose
minima correspond with matrix-multiplication algorithms to
rediscover the 8 = 2 solution. Our search, however, dif-
fers from that of Brent in that the function to be minimized
is simpler, and the optimization is done using evolutionary
search.

Since Winograd (Winograd 1971) demonstrated that for
the 2 x 2 case, seven multiplications are necessary, we will
have to turn to larger decompositions if we are to discover
better algorithms. We currently are examining the 3 x 3 case
with twenty three multiplications. We have been able to dis-
cover solutions when our initial populations contain muta-
tions of the a target solution. Success has been achieved
with populations with 120 mutations of a working solution,
however, random initial populations have yet to discover a
working solution. The main difficulty here is that the num-
ber of possible term one side or the other of a product has
increased from four to nine. Without restricting the rela-
tionships between coefficients, the number of possible ele-
ments in a multiplicand (the subset of X or ¥ submatrices)
has increased from 3* to 3. Given that the search space for
the entire tableau contains 7% items for the 2 x 2 case, the
m?, where 7 < m < 3% = 27, algorithms in the new space
demands attention, otherwise we are drawn into an expo-
nential quagmire. Our current efforts, thus, are focused on
restricting the search space. In addition, we are examining
additional population management techniques, such as hav-
ing the age of an individual mediate mutation. Currently, the
best 3 x 3 algorithm requires 23 multiplications (Laderman
1976). It is unknown at this time whether or not 23 multipli-
cations is necessary for this case. It is our hope that we will
be able to find a 3 x 3 algorithm requiring fewer multiplica-
tions.

Even though we have only matched the complexity of
currently known algorithms, the results of the search de-
scribed above can be used in other ways. We are currently
exploring the idea that one can dynamically reduce the num-
ber of multiplications for recursive matrix multiplication by
selecting an decomposition appropriate for the given ma-
trices. Consider the case when the submatrices of X are
equal. Then g, through g¢ of Strassen’s algorithm need not
be calculated as the left hand side is the zero matrix. Yet, if
X11 = X1 = —-Xj2 = —Xp,, five of the seven multiplications
of the second algorithm disappear. The count of elements
equal, and negated, between submatrices of X and Y can be
used as a heuristic for selecting an algorithm with the fewest
multiplications.

Acknowledgments

Dr. Kolen received support from the Office of Naval Re-
search, grant number N000014-990983, National Aeronau-
tical and Space Administration, grant number NCC2-1026

Prime, and the South Florida Water Management District,
contract C—10805 during the course of this research. Mr.
Bruce received support from the Office of Naval Research,
grant number N0O00014-990983.

References

Ackley, D. H. 1987. A Connectionist Machine for Genetic
Hillclimbing. Boston, MA: Kluwer.

Brent, R. P. 1970. Algorithms for matrix multiplication.
Technical Report CS 157, Computer Science Department,
Stanford University, Stanford, CA.

Coppersmith, D., and Winograd, S. 1987. Matrix multipli-
cation via arithmetic progressions. In Proceedings of the
Nineteenth Annual ACM Symposium on Theory of Com-
puting, 1-6.

Fogel, D. B. 1995. Evolutionary Computation: Toward a
New Philosophy of Machine Intelligence. Piscataway, NI
IEEE Press.

Laderman, J. D. 1976. A noncommutative algorithm for
multiplying 3 x 3 matrices using 23 multiplications. Bul-
letin of the American Mathematial Society 82(1):126-128.

Strassen, V. 1969. Gaussian elimination is not optimal.
Numberische Mathematik 14(3):354-356.

Syswerda, G. 1989. Uniform crossover in genetic algo-
rithms. In Schaffer, J. D., ed., Proceedings of the Third
International Conference on Genetic Algorithms (Fairfax,
VA, June 1989), 2-9. San Matao, CA: Morgan Kaufmann.
Winograd, S. 1971. On multiplication of 2 x 2 matrices.
Linear Algebra and Applications 4:381-388.

GENETIC ALGORITHMS

165

