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Abstract

To optimize large-scale distribution networks, solving about 1000
middle scale (around 40 cities) TSPs (Traveling Salesman
Problems) within an interactive length of time (max. 30 seconds)
is required. Yet, expert-level (less than 3%) accuracy is
necessary. To realize the above requirements, a
knowledge-embedded multi-stage GA method was developed.
This method combines a high-speed GA with a
knowledge-embedded GA having problem-oriented knowledge
effective for some special location patterns. When conventional
methods were applied, solutions for more than 20 cases out of
20000 cases were below expert-level accuracy. But the
developed method could solve all of 20000 cases at expert-level.

1. Introduction

The efficiency of products distribution remains on a lower
level in Japan than in the U.S. compared to the
productivity of manufacturers. This inefficiency causes
economical and social problems such as necessity of the
curtailment of transport expenses and environmental
requirement for urgently reducing the volume of auto
exhausts in Japan. In order to improve the distribution
efficiency, for instance, we are aiming at optimizations of
parts supply/distribution across multiple enterprises. To
simulate and optimize such parts supply/distribution across
multiple enterprises, the followings are considered to be
necessary.

First, the conditions have to be manually set up,
concerning locations of more than ten factories (parts
integration points for production), locations of dozens of
deposits (intermediate depositories/storehouses of parts),
and allocation of trucks to transport parts. Then, for each
set of above-mentioned conditions, it is necessary to
automatically create several hundreds of supply
/distribution routes among several hundreds of parts
makers (suppliers), and tens of deposits and factories.
Finally, it is required to calculate their total costs and to
globally evaluate these outputs.

To globally evaluate these outputs, human judgement is
indispensable and interactive response time (less than tens
of seconds) is required. Thus, the system needs to create
about 1000 or several hundreds of distribution routes
within at least tens of seconds, therefore, 1 route has to be
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created within tens of milliseconds. Since the creation of
each route is equivalent to a TSP (Traveling Salesman
Problem) of tens of (max 40) cities, approximate solving
methods are required to ensure the response time necessary
for the above human interaction.

Now, solutions generated by domain experts may have
2~3% of deviation from the mathematical optimal solution,
but they never generate worse solutions which may cause
practical problems. On the other hand, conventional
approximate solving methods (Yamamoto and Kubo 1997)
may more often generate a mathematically optimal
solution, but they cannot ensure the amount of errors
below 2~3%. The latter possibly causes serious problems.
Thus, those conventional methods were not practically
useful, especially for the above-mentioned applications.

Strict TSP solving methods such as branch and cut
method and Dynamic Programming (DP) or approximate
solving methods using Simulated Annealing (SA) and tabu
search (Ibaraki 1993; Hooker and Natraj 1995) take much
time for calculation. Therefore, they cannot guarantee the
above-mentioned responsiveness necessary for interactive
simulations. Lin-Kernighang (LK) method and its
improved version (Lin and Kernighan 1972) are also
proposed as solving methods of the TSP. However, they
cannot constantly guarantee expert-level accuracy.

Thus, the authors of this paper developed a method
which efficiently solves the TSP, using GA. This method
enables to guarantee the responsiveness through limiting
the number of generations of GA and through improving
genetic operations (initial generations, mutation and
crossover) (Onoyama et al. 2000). However, in some
distribution patterns, this solving method failed into local
minimum and could not achieve expert-level accuracy.
Therefore, we needed to further improve the solving
method to guarantee expert-level accuracy always.

In the second section, the simulator for the parts supply
/distribution network evaluation and its technical problems
are described. In the third section, the method for solving
the problem is proposed. Then, in the fourth section,
experiments to validate its effect and its results are shown.
In the fifth section, the effectiveness of the solving method
will be proved based on the experiment, and in the sixth
section, we will compare it with other methods. And in the
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seventh section, the result will be concluded.

2.Problems in Large-scale Distribution
Network Simulation

2.1 Large-scale Distribution Network Simulation

A distribution network across multiple manufacturing
enterprises is shown in figure 1. Parts for production are
delivered from parts makers (suppliers) directly to factories
or through deposits. Parts are not delivered to a factory or a
deposit independently by each parts maker, but a truck
goes around several parts makers and collects parts. This
improves distribution efficiency, which contributes to the
curtailment of distribution expenses and to the reduction of
the volume of auto exhausts.
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Figure 1. Large-scale Distribution Network

1) Set Conditions

i) Setting Factory Locations

ii) Setting Depository Locations

iii) Setting Parts Maker (Supplier) Locations
2) Create delivery routes and calculate costs
3) Decide Optimal Distribution Network

Figure 2. Distribution Network Simulation Process

In optimizing the above-mentioned large-scale
distribution logistic network, we need to grasp the total
cost of distribution under various conditions by repeating
the simulation process as shown in figure 2. To calculate
distribution cost in each simulation, it is necessary to
create delivery routes. However, there are several hundreds
of parts makers (suppliers), dozens of deposits and more
than ten factories. Therefore, there are about 1000

distributing routes each of which goes around dozens (max.

40) of parts makers starting from one of the deposits or
factories. Thus, in each simulation, delivery route creation
is repeated about 1000 times for a set of conditions
manually set up, the total delivery cost is calculated, and a
person in charge globally decides the network optimality
as shown in figure 2.

2.2 Technical Problems

Thus, to optimize such a large-scale distribution network,
solving about 1000 middle scale (max. 40 cities) TSPs
within an interactive length of time (max. 30 seconds) is
required. Yet, expert-level accuracy (less than 3% of the
deviation from the optimal solution) is always necessary,
since domain experts may have such errors in their
solutions but never generate worse solutions which may

cause practical problems.

Thus, the authors of this paper developed an efficient
method for solving the TSP through elaborating a random
restart method. The developed method enables to
guarantee the responsiveness through limiting the number
of repetitions and through devised component methods and
heuristics (Kubota et al. 1999). However, to meet the
required guarantee of below 3% of errors, it took more
than 1 minute to solve all 1000 TSPs. Thus, the time to
solve 1000 TSPs was needed to be decreased.

Therefore, in order to improve the responsiveness, we
proposed a GA, where heuristics are applied for the
crossover and the mutation as well as its generation
number is limited (Onoyama et al. 2000). However, for
some kinds of delivery location patterns included in
large-scale distribution networks, obtained solutions had
more than 3% of errors. Thus, other heuristics were applied
to cover the weaknesses of the solving method. However,
these heuristics were not effective for some patterns, and
the above-mentioned accuracy was still not guaranteed for
all kinds of patterns.

In the next section, a kmnowledgeable approximate
method to solve above-mentioned problems is proposed.

3. Knowledge-embedded Multi-stage
Genetic Algorithm

As stated in earlier sections, the delivery routing problem
in the above distribution network simulation can be taken
as a TSP, especially a symmetrical (non-directed)
Euclidean TSP (Yamamoto and Kubo 1997) assumed in
this paper.

3.1 Concept of the Proposed Method

In order to solve problems mentioned above in section 2,
the following knowledge-embedded multi-stage GA
method is proposed to guarantee both responsiveness and
accuracy for various kinds of delivery location patterns.

(1) Knowledge-embedded multi-stage GA

It is difficult to realize an effective way that always
guarantee expert-level optimality for various distribution
location patterns with required responsiveness. Heuristics
effective to certain patterns are not necessarily useful to
others. Yet, application of excessively complicate
algorithms or heuristics makes the responsiveness worse.
Therefore, a high-speed GA that mainly uses simple
general heuristics is combined with a
knowledge-embedded GA into which knowledge for
handling particular problems is incorporated. In this way,
we could avoid local minimum for various delivery
location patterns.

Concretely speaking, 2opt-type mutation is used for the
high-speed GA. This 2opt-type mutation quickly improves
tours. Therefore, good solutions are usually expected to be
obtained within a short length of time. However, it also
takes risks of falling into local minimum. According to
authors’ experiments, this high-speed 2opt-type GA brings
about inefficient tours for certain delivery location
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patterns.

Therefore, knowledge-embedded multi-stage GA
method is proposed. In this method, GA (called block-type
GA) having the following knowledge to meet with the
particularities of problems is applied after the use of the
2opt-type high-speed GA.

Namely, the following rather problem-oriented
knowledge about the neighborhood conditions or their
relaxation is incorporated into operations of the block-type
GA so that these operations can be controlled through
utilizing the knowledge. (a) Multi-step NI: Particular
heuristics that constructs the initial tour through using NI
(Nearest Insertion) method step-by-step to globally
consider adjacent delivery locations, where the adjacency
is defined by problem-oriented knowledge. (b) Block-type
mutation: Select a node randomly out of a tour, and mutate
it together with its adjacent nodes in order to avoid local
minimum solutions.

(2) Limiting the generation number of GA

In this method, time necessary for processing one
generation of GA is calculated under the determined
factors such as the population size and the probability of

crossover and mutation that affect the response time of GA.

Then, the number of generations repeatable within the
required response time is calculated. Finally, the above
calculated number of generations is repeated to obtain the
solution as optimal as possible within required response
time.

3.2 Components of the Proposed Method

(1) Method for generating initial individuals

In order to obtain highly optimal solution through avoiding
the convergence into local minimum, the randomness of
the initial individuals is important. However, the speed of
convergence slows down, if totally random initial solutions
are generated as is done by the random method a). Thus,
the other methods are devised as shown below.

a) Random method

Construct a tour through putting nodes in random order.
b) Random NI method

Put nodes in random order and using NI method according
to the order, reorder the nodes of the tour.

¢) Multi-step NI method

In case experts generate a traveling route, they usually
determine the order of delivery locations, globally
considering the whole route, so that the nearest location
from the present one can always be the next location to
deliver. On the model of such global consideration of
experts, a multi-step NI method is proposed which enables
to generate a traveling route similar to one generated by
experts.

In detail, this method constructs a tour through the
following procedure: 1) Temporally adding a node to a tour
by way of NI method and let A be the resultant tour length
increased by the temporal addition. 2) Multiply the original
tour length (= B), before the tour is changed in step 1), by
certain weight (= w). 3) If A<(w * B), the node is inserted
(actually added) into a tour. 4) Repeat 1) through 3) until
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all nodes satisfying 3) are inserted. 5) For nodes which do
not satisfy 3), try 1) throngh 4) with the weight increased.
Here the range of this increase is defined as
problem-oriented knowledge.

(2) Method for crossover

To inherit good features of parents through crossover and
to realize the prompt convergence of solutions in GA, a
crossover method using NI method is proposed. This
crossover method called NI-combined crossover comprises
the following steps: 1) Determine the crossover point in
one of parent chromosomes. 2) Obtain a sub-tour
represented by a group of genes located before the
crossover point in the chromosome. 3) Change the order of
remaining nodes that are not contained in the sub-tour
obtained in 2), according to the order of node (genes) in
the other parent chromosome. 4) Using NI method, insert
the remaining nodes into the sub-tour obtained in 2), in the
order after reordering in 3).

In this way, the generated tour is represented as a new
child. And through applying this NI-combined crossover
method, the order of nodes contained in parents is inherited
to their children to increase the convergence speed.

(3) Method for mutation

Mutation of GA often did not take much effect on the
convergence of solutions without combining local search
methods or without embedding problem-oriented
knowledge. Thus, the following two mutation methods are
proposed.

a) 2opt-type mutation

This method enables to improve the convergence speed
through combining a 2opt-like simple local search
heuristic method. This is to say, a gene (representing a
node) for mutation, we call it a mutation node, is randomly
selected out of parent’s genes, and the other node is
selected from nodes except the mutation node and its next
in the tour. The mutation node and its next node make a
link. The other node and its next node make another link.
After exchanging these two links, the length of a new tour
is evaluated. If the tour length is shorten as a result of the
exchange, the trials of such exchange are kept on going
through successively changing the other node until the
improvement (decrease) in the tour length is found or until
such exchanges are all checked.

b) Block-type mutation

2opt-type mutation easily improves tours, and good
solutions are expected to be obtained within a short length
of time. However, it also takes risks of failing into local
minimum. To obtain a further optimal solutiom, it is
desirable to escape from local minimum by destroying a
part of a tour. For this purpose, the following block-type
mutation is proposed.

At first, select a mutation node from a tour at random to
delete it together with its neighbor nodes. The size of this
neighborhood is also selected at random within the range
specified by somewhat problem-oriented knowledge. Then,
reconstruct the tour through inserting the deleted nodes
into the tour using NI method.

3.3 Proposed Solving Method



Through integrating above components, the following
three kinds of GA methods are proposed to assure both
responsiveness and accuracy for various kinds of delivery
location patterns.

(1) 2opt-type GA

This uses the random NI method for generating initial
individuals, NI-combined crossover for the crossover, and
the 2opt-type mutation for the mutation. This method
makes it possible to guarantee short time convergence of
solutions due to further improving initial solutions
generated by random NI method through the application of
the NI-combined crossover and the 2opt-type mutation.

(2) Block-type GA (Knowledge-embedded GA)

In this method, half of initial individuals are solutions
obtained by the multi-step NI method and another half are
those of the random method. The NI-combined crossover
is used for the crossover operation and the block-type
mutation is used for the mutation. This method is
considered to obtain highly optimal solutions through
avoiding local minimum due to constructing the highly
random initial solutions mixed with globally near
optimized ones and due to reconstructing a large part of a
locally optimized tour by the use of block-type mutation.
(3) Knowledge-embedded multi-stage GA

The finally proposed method is called “Knowledge
embedded multi-stage GA”. This comprises the 2opt type
GA method followed by the block type GA method. And
the knowledge-embedded multi-stage GA selects the better
one out of the solutions obtained by use of these two GA
methods in order to have highly accurate solutions for
coping with various types of delivery location patterns. Yet,
to guarantec the responsiveness, both of these two GAs
finish processing within the limited length of time through
initially calculating the number of generations repeatable
within the time limit (e.g. 15 milliseconds for each GA).

4.Experiment and Result
4.1 Experiment

In this section, the experiment to evaluate the proposed
method is explained. A computer equipped with Intel
Pentium II (450MHz) processor and 256MB memory is
used for this experiment. In distribution networks targeted,
a truck cannot go around more than 40 delivery locations
(parts makers) within one day. Therefore, 40 citiecs TSPs
were used for this experiment. Yet, various combinations
of 40 delivery locations are possible. Thus, randomly
selected 20000 different patterns of 40 delivery locations
were prepared. Then, to evaluate three kinds of GA
methods described in 3.3, each solving method solved
20000 test patterns for 100 times and the probability to
obtain solutions within 3% of errors was calculated.

4.2 Result

To guarantee the responsiveness, the time necessary for
processing one generation is calculated, and based on this
value, the generation number of GA is determined. Table 1

shows an example of the generation number to respond
within 30 milliseconds when the population size is 100.
Then, the tests were repeated 100 times for three kinds of
GAs. Each test used 20000 kinds of delivery location
patterns. The probability 1o obtain solutions within 3% of
errors compared to the optimal solutions was checked.
Furthermore, the probability to obtain the optimal solutions
within 30 milliseconds was also checked. These results are
shown in Table 2.
Table 1. The number of generations of each method
repeatable within 30 milliseconds

# Method Initial Mutation | Generations
Generations
1 | 2opt-type GA Random NI 2opt-type 24
2 | Block-type GA | Random  + | Bjock-t 20
ock-ype Multi-step NI ock-iype
Table 2. The solution optimality
i Method Optimal (%) Under 3% error (%)
1 | 2opt-type GA 84.45 99,885
2 | Block-type GA 83.75 99.785
3 | Multi-stage GA 92.05 100.0

S. Evaluation

According to Table 2, only the knowledge-embedded
multi-stage GA method could solve a 40 cities TSP with
less than 3% of errors with 100% of probability within 30
milliseconds.

(1) Effect of block-type GA (knowledge-embedded
GA)
Tour’s shapes were examined as to solutions generated by
the 2opt-type GA and leaving more than 3% errors. As a
result, most of these shapes were like gear wheels as
shown in fig. 3 (a). Experts usually generate more straight
routes as shown in fig. 3 (b). If experts find inefficient
routes such as shown in fig. 3 (a), they reject to use the
system since they consider it as unreliable one. In case of
using block-type GA (knowledge-embedded GA), tours
similar to fig. 3(b) were generated even for such delivery
location patterns. The reason is that knowledge-embedded
GA integrates the random method, the multi-step NI, and
the block-type mutation in order to avoid falling local
minimum.
(2) Effect of knowledge-embedded multi-stage GA
According to our experiment, in case of the 2opt-type GA,
23 cases out of 20000 tests had over 3% errors. In case of
the block-type GA method, 43 cases had more than 3%
errors.

However, the knowledge-embedded multi-stage GA,
namely, the 2opt-type GA subsequently followed by the
block-type GA could generate solutions below 3% of error
within 30 milliseconds, for every case in 20000 tests. The
reason is that, coping with various delivery location
patterns, either 2opt-type GA or knowledge-embedded GA
can avoid falling into local minimum (over 3% errors).
Thus, the knowledge-embedded multi-stage GA method
could guarantee the responsiveness as well as the
expert-level accuracy, namely, below 3% errors.
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expert-level accuracy, namely, below 3% errors.
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6. Comparisons

A lot of methods to solve TSP are proposed for practical
applications. In this section, our methods are compared
with other methods.

LK and its improving methods (Lin and Kernighang
1972; Yamamoto and Kubo 1997) take a long calculation
time. For example, it took 40 seconds for the LK method
to solve a 40 cities TSP. This long calculation time makes
it unsuitable to apply these methods for interactive
distribution logistic simulations.

Theoretically, SA (Yamamoto and Kubo 1997) is said to
be able to search very near-optimal solutions by decreasing
the risk of falling into local minimum. But practically, it is
very difficult to adjust SA’s parameters such as cooling
speed for coping with various location patterns.
Furthermore, SA usually takes a long calculation time to
get above-mentioned theoretical near-optimal solutions.
Also, Tabu Search (Hooker and Natraj 1995) usually needs
a long calculation time to get practically optimal solutions.
In some of our experiments, it took about 400 milliseconds
for SA to solve a TSP of 15 cities and about 40 seconds to
solve a TSP of 100 cities. Therefore, these methods are
not suitable for repetitive simulations including interactive
human judgements such as our application.

Moreover, some algorithms that can search very
near-optimal solutions for the Euclidean TSP in
polynomial time using devised DP are proposed (Arora
1998). However, these algorithms also take too long time
to use for practical applications such as ours and it seems
too hard for ordinary system developers to modify them
flexibly for coping with various special requirements of
practical applications.

So-called random restart methods which apply local
search such as 2opt for improving random initial solutions,
can obtain near-optimal solutions. These include GRASP
(Feo, Recende and Smith 1994) or the elaborated random
restart method (Kubota et al. 1999) that can guarantee
responsiveness by limiting the number of repetitions.
However, according to the authors’ experiment, the
above-mentioned elaborated random restart method needed
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about 100 milliseconds to solve the 40 cities TSP and to
guarantee less than 3% errors (Kubota et al. 1999).

7.Conclusion

In this paper, a knowledgeable GA method for solving the
TSP was proposed and evaluated. This is applicable to the
optimization of large-scale distribution networks that
requires repetitive interactive simulations. This kind of
application requires responsiveness as well as optimality,
for example, solving 1000 TSPs with expert-level accuracy
within 30 seconds.

In order to guarantee expert-level solutions for various
kinds of delivery location patterns, the high-speed GA was
combined with the knowledge-embedded GA. The
high-speed GA comprises the random NI method and the
2opt-type mutation. And this high-speed GA mainly uses
simple general heuristics. The knowledge-embedded GA
includes the random method, the muiti-step NI method,
and the block-type mutation. And particular knowledge
was incorporated in this knowledge-embedded GA to make
up for the weakness of the high-speed GA. Namely, to
cope with delivery location patterns for which the
high-speed GA cannot guarantee expert-level solutions,
this knowledge-embedded GA has rather problem-oriented
knowledge.

According to our experiment, in case of using the former
high-speed GA, 23 test cases out of 20000 test cases had
more than 3% of errors compared to the optimal solution.
However, our proposed knowledge-embedded multi-stage
GA method (which comprises the high-speed GA and the
knowledge-embedded GA) could solve each of all 20000
test cases within 30 milliseconds at expert-level accuracy
(less than 3% errors).
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