
An Intelligent Interface for Keyboard and Mouse Control
- Providing Full Access to PC Functionality via Speech

Bill Manaris
Computer Science Department

College of Charleston

Charleston, SC 29424

manaris@cs.cofc.edu

Renre McCauley
Computer Science Department

College of Charleston

Charleston, SC 29424
mccauley@cs.cofc.edu

Valanne MaeGyvers
Psychology Department
University of Louisiana

Lafayette, LA 70504
macgyver@louisiana.edu

ABSTRACT
SUITEKeys is a speech user interface for motor-disabled
computer users. This interface provides access to all
available functionality of a computer by modeling
interaction at the physical keyboard and mouse level.
SUITEKeys is currently implemented for MS Windows
platforms. Its architecture integrates a continuous, speaker-
independent recognition engine with natural language
processing components. It makes extensive use of dialog
management to improve recognition accuracy. SUITEKeys
extends the speech-keyboard metaphor through
functionality visible on its graphical user interface, and
accessible through speech. Experimental results indicate
that speech input for alphanumeric data entry is a much
more effective modality than existing alternatives for the
target user group. Such alternatives include miniaturized
keyboards, stylus "soft" keyboards, and handwriting
recognition software.

Keywords
Speech recognition, natural language processing, intelligent
user interfaces, accessibility.

INTRODUCTION
Studies indicate that speech interaction with a virtual
keyboard and mouse is a very effective input modality for
motor-control challenged users, in terms of data entry, task
completion, and error rates [1, 2, 3]. These results apply to
both permanent and temporary (task-induced) motor
disabilities. Examples of the latter include users entering
arbitrary alphanumeric data in mobile computing devices
and hands-busy environments. Speech interaction with a
virtual keyboard and mouse has been shown to be far better
than alternative modalities such as mouthstiek, handstick,~

miniaturized keyboards, stylus "soft" keyboards, and
handwriting recognition software [3].

This paper presents SUITEKeys 1.0--a speech user
interface for providing access to a virtual keyboard and

mouse. SUITEKeys integrates state-of-the-art components
for speech recognition, natural language processing, and
dialog management, to provide a speaker-independent,
continuous-speech interface. It is implemented on MS
Windows platforms (95, 98, NT, 2000, and potentially
Windows CE--for palmtop PCs).

This speech-interface concept provides motor-disabled
users with universal access to any device that
requires/supports alphanumeric data entry, such as palmtop
PCs, cellular phones, and camcorders. It may also be used
by able-bodied users with temporary, task-induced motor
disabilities, such as users entering arbitrary (non-word)
alphanumeric data in mobile computing and/or hands-busy
environments. Specifically, as the physical dimensions of
traditional input devices shrink, the motor skills of the user
become less effective, almost inadequate. For instance,
studies show that users may experience severe reduction in
data entry speed (words per minute) when switching from
regular QWERTY keyboard to a mobile-device keyboard
alternative. Specifically, these studies report a 75%
reduction on a stylus-based "soft" keyboard (PalmPilot) and
a 60% reduction on a telephone keypad [4, 5].

SUITEKeys allows users to transcribe sequences of
keystrokes and mouse actions using spoken language. It
assumes that the user speaks English and has minimal or no
speech impediments. It models an 84-key keyboard (no
numeric pad) and two-button mouse functionality. 2 Other
applications, including the operating system, treat the
generated keyboard and mouse events as having originated
from the corresponding physical devices.

Other speech applications, such as NaturallySpeaking and
Microsoft Voice, do not provide access to all the
functionality available through the physical keyboard and
mouse [6, 7]. This is because they are designed for higher-
level tasks, such as Dictation and Command & Control.
They allow input of keystrokes either by requiring a fixed
keyword as prefix (e.g., "Press a"), or by entering a spell

Copyright © 2001, AAAI. All rights reserved.
] Mouthstick and handstick are devices used by motor-disabled

users to manipulate QWERTY keyboards.
2 SUITEKeys models only the left keys for ALT, CONTROL, and

SHIFT.

182 FLAIRS-2001 From: FLAIRS-01 Proceedings. Copyright © 2001, AAAI (www.aaai.org). All rights reserved.

mode. Moreover, they do not necessarily model all 84
keys. Finally, they send recognized keystrokes directly to
the active window, bypassing the operating system. This
prohibits the operating system and other applications from
attaching arbitrary semantics to sequences of keystrokes
(e.g., ALT-CONTROL-DEL), and intercepting them.

OVERVIEW
SUITEKeys was originally developed as a testbed
application for the SUITE speech-understanding-interface
architecture at the University of Louisiana at Lafayette [8].
It has been finalized at the College of Charleston. It is
distributed as freeware for non-profit use. An early
prototype of the system, the underlying architecture, and
theoretical foundations for this work were presented in
ASSETS-98, FLAIRS-99 and elsewhere [1, 2, 9].

SUITEKeys has been implemented using MS Visual Studio,
SAPI, and Lex and YACC. Minimum system requirements
include: Pentium 120 processor (preferred Pentium 200 and
up); 16MB RAM for Windows 95 & 98, 24MB RAM for
Windows NT, 64MB RAM for Windows 2000; 18MB disk
space; sound card & sound card device driver supported in
Windows; microphone (preferred noise-reducing, close-talk
headset), and 16 kHz/16 bit or 8kHz/16 bit sampling rate
for input stream.

SU[TEKeys is available at www.cs.cofc.edu/~manaris/
SUITEKeys/.

Domain Limitations
Although the system incorporates a continuous, speaker-
independent engine, this capability could not be exploited
in all cases. This is due to speech ambiguities in the
linguistic domain which normally confuse even human
listeners. For instance, the linguistic domain includes
several near-homophone letters, such as "b" and "p’, or "d"
and "t". 3 For this reason, a few tasks have been modeled
only through discrete speech. This requires that the user
pause between words. Although this may make interaction
less natural in some cases, it improves understanding
accuracy considerably.4

Specifically, we use discrete speech mainly when
transcribing regular letters (e.g., "a", "b"). We also use it
a few other cases--where our usability studies showed that
users used it anyway--such as entering function keys (e.g.,
"Function Eleven", "Function Twelve") and certain special
keys (e.g., "Insert", "Home", "Print Screen"). We use
continuous speech in all other cases, such as entering letters
using the military alphabet, numbers, repeatable keys (e.g.,

3 Hence the invention of the military alphabet.

4 We use the term "understanding" as opposed to "recognition,"

since the system, in addition to translating an utterance to its
ASCII representation (recognition), it also carries out the
intended meaning (understanding), such as type a letter, move
the mouse, and switch speakers.

I OperatingSystem]

B

|

Fig. l. SUITEKeys Architecture.

"Up Arrow", "Tab", "Back Space"), mouse commands, and
system commands.

SYSTEM ARCHITECTURE
The architecture of SUITEKeys integrates speech
recognition and natural language processing components
(see Figure 1). It processes input that originates as speech
events and converts it to operating system keyboard and
mouse events. The complete system runs on top of the
operating system like any other application. Other
applications are unaware that keyboard/mouse events
originated as speech input.

The architecture is subdivided into (a) the language model
and (b) language processing components. Speech events are
processed in a pipelined fashion to enable real-time
response [2, 8]. Processing is performed by the following
components:

Dialog Management
The SUITEKeys architecture incorporates a stack-based
dialog manager. This subsystem utilizes a dialog grammar
containing dialog states and actions. Each top-level state
corresponds to a specific language model (e.g., lexicon,
grammar). The overall linguistic domain has been divided
into thirteen such states. The dialog manager loads, in real
time, the appropriate dialog state based on the current state
of the interaction. Given the ambiguity of the linguistic
domain, this allows processing components to focus on
specific subsets of the overall domain, and thus improve
recognition accuracy and performance.

Speech Processing
SUITEKeys evolved through several architectures following
the rapid developments in speech recognition within the last
six years. Currently, it implements the Microsoft Speech
API (SAPI). The latest version of SUITEKeys comes

HCl / IUI 183

bundled with the MS Speech Recognition engine
(freeware), but could also work with other SAPI-compliant
engines, such as Dragon Systems NaturallySpeaking [6].

Natural Language Processing
The architecture incorporates a left-to-right, top-down, non-
deterministic parser. This parser supports multiple parse
trees, thus providing for ambiguity handling at the semantic
level. It incorporates semantic actions for constructing
semantic interpretations of user input.

Code Generator
This module converts semantic interpretations--the output
of the parser--to low-level code understood by the
operating system.

Other Components
Other components of the SUITEKeys architecture include a
knowledge-base manager, speech generator, lexical
analyzer, and pragmatic analyzer. The application domain
(as implemented in the final release of SUITEKeys) does
not have significant lexical, pragmatic, and speech
generation requirements. A detailed discussion of these
components appears in [2].

GRAPHICAL USER INTERFACE
Although SUITEKeys is primarily a speech user interface, it
includes a graphical user interface for visibility and
feedback purposes. Specifically, the user interface
identifies available functionality and how to access it
(visibility); it also provides information about the effects
user actions (feedback).

The SUITEKeys graphical user interface has two views:
maximized and minimized.

Maximized View
This view is designed to provide maximum feedback to the
user. As shown in Figure 2, this view allows the user to
focus on SUITEKeys and its operation. This view provides
several forms of feedback (left-to-right, top-to-bottom):

¯ Command History: a list of recognized commands in
reverse chronological order. Unrecognized commands
are denoted by "???".

¯ Speech Processing: superimposed animations provide
feedback for two independent yet related events: voice
input level corresponds to raising and dropping rings in
green, yellow, and red (Figure 3); speech engine
processing corresponds to a revolving "SK" (Figure 4).

¯ Toggle Keys: on/off indicators for CAPS LOCK and
SCROLL LOCK.

¯ Generated Keystrokes: a keyboard that visually
"echoes" generated keystrokes.

Additionally, this view identifies all system commands
through its menu structure. Since some system commands
disconnect the speech engine from the microphone (e.g.,
Microphone Calibration), such commands are not

Fig. 2: SUITEKeys maximized view.

Fig. 3: Input level. Fig. 4: Input processing.

Fig. 5: SUITEKeys minimized view.

accessible through speech. This is to prevent users from
entering system states from which they may not be able to
exits

Minimized View
Effective user interfaces should be invisible to the user. As
Mark Weiser states,

"[a] good tool is an invisible tool. By invisible, I mean that
the tool does not intrude on your consciousness; you focus
on the task, not the tool. Eyeglasses are a good tool -- you
look at the world, not the eyeglasses." [10].

For this reason, SUITEKeys provides a minimized view.
This view is intended for when the user wants to
concentrate on the task at hand, i.e., controlling the PC, as
opposed to SUITEKeys itself (see Figure 5). This view
always stays on top and provides minimal feedback, namely
the last-recognized input, which modifier/toggle keys are
pressed, the volume indicator, and the speech engine
processing status.

5 These commands are only accessible to users with some motor
control via the physical keyboard/mouse interface.

164 FLAIRS-2OOl

KEYBOARD SPEECH COMMANDS
SUITEKeyx allows users to input sequences of keystrokes
using spoken language, much as if they were transcribing to
someone how to perform the same actions with a physical
keyboard. Specifically, keys may be tapped, pressed, or
released. Typing errors may be handled similarly to
physical keyboard-entry errors, i.e., via the "Back Space"
key.

In the following sections, unless otherwise specified, users
may use continuous speech.

Typing Alphanumeric Keys
Given the difficulty of recognizing certain letters of the
alphabet, the system supports both regular and military
pronunciations.

Saying the name of a letter (e.g., "a", "b") sends the
corresponding letter to the active window. To improve
accuracy, only discrete speech may be used for sequences
of alphanumeric keystrokes.

Saying the military equivalent of a letter (e.g., "alpha",
"bravo") sends the corresponding letter (e.g., "a", "b")
the active window.

Saying a number (e.g., "one", "two") sends the
corresponding number to the active window.

Word Auto-Completion
Studies show that word prediction techniques improve user
performance considerably. This is accomplished by giving
the user a choice of the most-likely words, based on
previous input. This reduces the overall number of
keystrokes a user has to enter by as much as 44% [11].

SUITEKeys incorporates a word auto-completion
mechanism. A word prediction box is displayed when the
user begins typing a new word. This box is attached to
bottom of the mouse pointer for easy positioning. Word
auto-completion allows the user to reduce the number of
"keystrokes" needed to enter a previously used word.
Instead of typing the entire word, the user types enough
letters to make it appear in the prediction box. Saying
"Select" types the rest of the word. Words are maintained
using a most-recently-used scheme (identical to the paging
scheme in operating system literature).

Typing Modifier Keys
Modifier keys are held pressed while typing alphanumeric
keys to provide semantic variations.

Saying "Press" and a modifier key (i.e., "Ait", "Control",
"Shift") holds the key pressed. Saying "Release" and
modifier key, releases the key. The graphical user interface
provides feedback as to which modifier keys are pressed at
any time.

Typing Toggle Keys
Saying "Caps Lock", or "Scroll Lock" toggles the
corresponding key. The graphical user interface identifies
toggle key status (on/off).

Typing Other Keys
Saying the name of other keys (e.g., "Function Twelve",
"Escape", "Space", "Ampersand", "Tab", "Left Arrow")
types the corresponding key.

MOUSE SPEECH COMMANDS
SUITEKeys allows users to manipulate a two-button mouse
using spoken language, much as if they were transcribing to
someone how to perform the same actions with a physical
mouse. Specifically, the mouse may be moved in different
directions; its buttons may be clicked, double-clicked,
pressed, or released.

SUITEKeys provides three different techniques for setting
the position of the mouse pointer.

Continuous Motion
Users may smoothly move the mouse pointer towards a
specific direction. Movement continues until a command is
spoken (e.g., "Stop"), or until the pointer reaches a screen
border. This is intended for rough positioning of the
pointer, when the target is far from the original position.

For example, saying "move mouse down" ... "stop", will
move the pointer downward some distance. Saying "move
mouse two o’ clock" ... "stop" will move the pointer
towards two o’clock.6

Relative Positioning
Users may reposition the mouse pointer a number of units
from its original position. This is intended for fine-tuning
the mouse position, when the mouse pointer is near the
target.

For example, saying "move mouse down three" will
reposition the pointer 3 units below its original position.
Saying "move mouse three o’clock forty" will reposition
the pointer 40 units to the fight.

SUITEKeys subdivides the screen into 100 units--"zero" to
"ninety-nine"---on both horizontal and vertical axes. This
makes relative positioning independent of screen resolution.

Absolute Positioning
Users may reposition the mouse pointer to a specific screen
location. This is intended for targets whose approximate
screen location is known.

For example, saying "set mouse position three five" will
place the pointer 3 units away from the left screen border
and 5 units away from the top. In other words, "zero zero"
corresponds to the top-let~ comer and "ninety-nine ninety-
nine" to the bottom-right corner.

Controlling Mouse Buttons
Mouse buttons may be controlled similarly to keyboard
keys. For example, saying "Click left button" or "Double-
click right button" will perform the corresponding actions.

6 Twelve o’clock is the same as up, three o’clock is right, six
o’clock is down, etc.

HCl I IUI les

Dragging is achieved by pressing the left mouse button
(e.g., "Press left button") and moving the mouse. Dropping
is achieved by releasing the left mouse button (e.g.,
"Release left button").

OTHER FUNCTIONALITY
SUITEKeys provides additional functionality through the
menu structure in maximized view. This functionality is
also accessible through speech, as long as it does not
disconnect the microphone from the speech engine.

Context-Sensitive Help~"What Can I Say"
Studies show that there are many names possible./br any
object, many ways to say the same thing about it, and many
di.[/erent things to say. Any one person thinks of only one
or a few of the possibilities. [12]

For this reason, every dialog state includes the command
"What Can I Say". This command brings up a box with
available commands in this context. This box also appears
after a number of unrecognized inputs (currently 4). For
example, Figure 6 shows the corresponding box for the
Preferences dialog state. Once a correct conunand is
spoken, the box disappears.

~
eyboard feedback
inimize on startup

~tve or cEtrlcel
ore mouse <dir) <dist>
.g. "move mouse left t O’)

ore help

Fig. 6: Context-sensitive help.

Progressive Disclosure "More Help"
SUITEKeys incorporates a two-step, progressive-disclosure
mechanism for help. Specifically, in most dialog states, one
of the commands displayed as a result of"What Can I Say"
is "More Help". When spoken, this command brings up the
corresponding topic in the Help file.

Quick Training
SUITEKeys incorporates training "cards" to teach system
essentials to the user. These cards are displayed
automatically for every new speaker. Each card
corresponds to a training exercise on a subset of
SUITEKeys functionality. Each training exercise is
associated with a very small linguistic model. Training
cards are designed so that a user may proceed to the next
lesson only by mastering the concept being presented (e.g.,
mouse control).

USABILITY STUDIES
We have conducted several usability studies related to
SUITEKeys. Most of them were of formative nature; they
provided feedback and direction during development [1, 2,
3]. These results indicate that interaction with a speech-

accessible keyboard and mouse is a very effective input
modality, in terms of user data entry, task completion, and
error rates. Specifically, users performed much better using
a Wizard-of-Oz model of SUITEKeys as opposed to
handstick. Handstick is a good approximation of alternate
input modalities such as mouthstick, miniaturized
keyboards, stylus "soft" keyboards, and handwriting
recognition software. Specifically, the average results on
our particular benchmark task were as follows:

¯ Time to completion: 201.5 sees for speech; 321.1 sees for
handstick.

¯ Amount completed: 99.8% for speech; 99.1% for
handstick.

¯ Data entry speed: 1.336 characters/see for speech; 0.766
characters/see for handstick.

¯ Error rate: 0.033 for speech; 0.09 for handstick.

These results suggest that this speech modality is far better
than alternative modalities used in mobile devices that
require manual dexterity for alphanumeric data entry. Such
modalities are characterized by one or more of the
following: decreased physical input area, increased visual
scan time, and increased character entry time (e.g.,
handwriting recognition). A speech user interface similar to
SUITEKeys appears to be relatively easy to learn and to
use, particularly for motor challenged and/or computer
illiterate users. Anecdotal evidence from the novice
subjects of the study suggests that this system is far less
intimidating than other interfaces.

In terms of summative evaluation, we have conducted one
small-scale experiment using our latest implementation of
SUITEKeys. We are also in the process of conducting a
large-scale study at the University of Louisiana at Lafayette.
The results of the small-scale experiment apply only to
speech and are approximate. However they provide an idea
as to how closely the current implementation of
SUITEKeys is to the ideal Wizard-of-Oz model. These
results are as follows:

¯ Time to completion: 346.8 sees.
¯ Amount completed: 100%.
¯ Data entry speed: 0.695 characters/see.
¯ Error rate: 0.057.

Discussion
These preliminary summative results suggest that, in its
current implementation, SUITEKeys is a useful application
for motor-impaired users. Although it does not appear to be
as effective as handstick (at least in terms of data entry
speed and task completion time), it is a viable alternative
for users who are unable or unwilling to use means that
require manual dexterity for alphanumeric data entry. Of
course, this assumes a user with no significant speech
impediments and a noise-free environment.

As mentioned above, although the system incorporates a
continuous speech engine, this capability could was not

186 FLAIRS-2001

exploited in all cases to improve recognition accuracy.
Obviously, discrete speech input slows down data entry.

Research suggests that, in the near future, computer speech-
recognition may surpass human speech-recognition [14].
Therefore, the above domain limitations may be specific to
the current state-of-the-art in speech recognition. The
modular design of SUITEKeys makes it straightforward to
improve its speech recognition accuracy by attaching it to
newer speech engines, as they become available.

CONCLUSION
SUITEKeys is a continuous-speech user interface for motor-
disabled computer users. This interface provides access to
all available functionality of a computer by modeling
interaction at the level of the physical keyboard and mouse.

By following this "metaphor as model" approach,
SU/TEKeys facilitates the formation of a conceptual model
of the system and its linguistic domain [13]. Given that the
linguistic primitives of speech user interfaces are invisible
(as opposed to the primitives of well-designed graphical
user interfaces), this significantly improves the system’s
usability.

Additional functionality--that is functionality beyond the
interface metaphor--is incorporated by making it visible
through the SUITEKeys graphical user interface. The user
may simply read aloud menu entries and dialog-box
elements to select them. Further support for learning and
retaining how to use the system is provided through
context-sensitive help (i.e., "What Can I Say") and
progressive disclosure (i.e., "More Help").

This relatively low-level approach has a potential drawback
compared to speech user interfaces employing a higher-
level approach, such as NaturallySpeaking. In many eases,
a user may be required to "synthesize" higher-level actions
(e.g., Drag & Drop) through a sequence of low-level
actions. This is especially "painful" in the context of
dictation. Although SUITEKeys does not "claim" to be a
dictation package, it address this drawback through (a) its
word auto-completion mechanism and (b) its capability
relinquish control to other speech-enabled applications.

Although speech is not the best modality for all human-
computer interaction tasks, when delivered at the level of
keyboard and mouse it allows for universal access to
computing devices--functionally similar to the one enjoyed
through a standard QWERTY keyboard and mouse. The
presented solution, in a future incarnation, might
complement or even replace existing mobile computing
modalities in many application domains. Since it does not
require much physical device area for alphanumeric data
entry (only microphone and perhaps speaker, for feedback),
the physical device may shrink as much as advances in
microelectronics allow.

ACKNOWLEDGMENTS
This research has been partially supported by the Louisiana
Board of Regents grant BoRSF-(1997-00)-RD-A-31. The
authors acknowledge the contribution of Rao Adaviknlanu,
Huong Do, Corey Gaudin, Garrick Hall, William Jacobs,
Jonathan Laughery, Michail Lagoudakis, Eric Li, Adi
Sakala, and the Spring 1999 Human-Computer Interaction
class at the University of Louisiana at Lafayette.

REFERENCES
I. Manaris, B. and Harkreader, A. 1998. SUITEKeys: A

speech understanding interface for the motor-control
challenged, in Proceedings of ASSETS ’98 (Marina del
Rey, CA, April 1998), ACM, 108-115.

2. Manaris, B., MacGyvers, V., and Lagoudakis, M.,
"Speech Input for Mobile Computing Devices,"
Proceedings of 12th International Florida AI Research
Symposium (FLAIRS-99) (Orlando, FL, May 1999),
286-292.

3. Manaris, B. and MacGyvers, V. "Speech for
Alphanumeric Data Entry - A Usability Study,"
submitted to the International Journal of Speech
Technology.

4. Goidstein, M., Book, R., Alsio, G., Tessa, S. 1998.
Ubiquitous Input for Wearable Computing: QWERTY
Keyboard without a Board, in Proceedings of the First
Workshop on Human Computer Interaction with
Mobile Devices (Glasgow, Scotland, 1998), GIST
Technical Report 98/1. Available at
www.dcs.gla.ac.uk/-johnson/papers/mobile/HCIMD 1.
html

5. MacKenzie, I.S., Zhang, S.X., Soukoreff, R.W. Text
Entry Using Soft Keyboards. Behaviour & Information
Technology l8 (1999), pp. 235-244. Available
www.yorku.ca/faculty/academic/mack/B IT3 .html

6. Dragon Systems, Inc., NaturallySpeaking. Available at
www.dragonsys.com.

7. Microsoft, MS Speech Engine 4.0. Available at
www.microsoft.com/IIT/download/.

8. Manaris, B. and Harkreader, A. SUITE: speech
understanding interface tools and environments, in
Proceedings of FLAIRS ’97 (Daytona Beach, FL, May
1997), 247-252.

9. Manaris, B. and Dominick, W.D. NALIGE: A user
interface management system for the development of
natural language interfaces, International Journal of
Man-Machine Studies 38, 6 (1993), 891-921.

10. Weiser, M. The world is not a desktop. Interactions,
January 1994, p. 7.

11. Copestake, A. Applying Natural Language Processing
Techniques to Speech Prostheses. 1996 AAAI Fall
Symposium on Developing Assistive Technology for

HCl / IUI 187

People with Disabilities. Available at www-
csli.stanford.edu/-aac/papers.html.

12. Fumas, G.W., Landauer, T.K., Gomez, L.M, and
Dumais, S.T. Statistical semantics: analysis of the
potential performance of key-word information
systems, The Bell System Technical Journal 6 (1983),
p. 1796.

13. Preece, J., Rogers, Y., Sharp, H., Benyon, D., Holland,
S., and Carey, T. tluman-Computer Interaction.

Addison Wesley, Reading, Massachusetts, 1994, p.
146.

14. USC News Service, Machine Demonstrates
Superhuman Speech Recognition Abilities, news
release 0999025, Sep. 30, 1999. Available at
http://uscnews.usc.edu/newsreleases/.

188 FLAIRS-2001

