
Validity of First-Order Knowledge Bases

John Debenham

Faculty of Information Technology
University of Technology, Sydney

PO Box 123 Broadway, NSW 2007, Australia
debenham@it.ms.edu.au

Abstract
A knowledge base is maintained by modifying its
conceptual model and by using those modifications to
specify changes to its implementation. The maintenance
problem is to determine which parts of that model should be
checked for correctness in response a change in the
application. The maintenance problem is not computable
for first-order knowledge bases. Two things in the
conceptual model are joined by a maintenance link if a
modification to one of them means that the other must be
checked for correctness, and so possibly modified, if
consistency of the model is to be preserved. In a unified
conceptual model for first-order knowledge bases the data
and knowledge are modelled formally in a uniform way. A
characterisation is given of four different kinds of
maintenance links in a unified conceptual model. Two of
these four kinds of maintenance links can be removed by
transforming the conceptual model. In this way the
maintenance problem is simplified.

Introduction

The conceptual model of a knowledge base specifies what
should be in an implementation of that knowledge base,
but not what the implementation will be required to do. So
the conceptual model may be used to drive the
maintenance process (Debenham, 1997). The maintenance
problem is to determine which parts of that model should
be checked for correctness in response a change in the
application. The maintenance problem is not computable
for first-order knowledge bases. Maintenance links join
two things in the conceptual model if a modification to one
of them means that the other must be checked for
correctness, and so possibly modified, if consistency of
that model is to be preserved. If that other thing requires
modification then the links from it to yet other things must
be followed, and so on until things are reached that do not
require modification. If node A is linked to node B which
is linked to node C then nodes A and C are indirectly
linked. In a coherent knowledge base everything is
indirectly linked to everything else. A good conceptual
model for maintenance will have a low density of
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maintenance links (Mayol and Teniente, 1999). The set 
maintenance links should be minimal in than none may be
removed.

Informally, one conceptual model is "better" than
another if it leads to less checking for correctness. The aim
of this work is to generate a good conceptual model. A
classification into four classes is given here of the
maintenance links for conceptual models expressed in the
unified (Debenham, 1998) knowledge representation.
Methods are given for removing two of these classes of
link so reducing the density of maintenance links.

Approaches to the maintenance of knowledge bases are
principally of two types (Katsuno and Mendelzon, 1991).
First, approaches that take the knowledge base as presented
and then try to control the maintenance process (Barr,
1999). Second, approaches that engineer a model of the
knowledge base so that it is in a form that is inherently
easy to maintain (Jantke and Herrmann, 1999) (Darwiche,
1999). The approach described here is of the second type
because maintenance is driven by a maintenance link
structure that is simplified by transforming the conceptual
model.

The majority of conceptual models treat the "rule base"
component separately from the "database" component.
This enables well established design methodologies to be
employed, but the use of two separate models means that
the interrelationship between the things in these two
models cannot be represented, integrated and manipulated
naturally within the model (Debenham, 1998). Neither 
these two separate models is able to address completely the
validity of the whole knowledge base.

The terms data, information and knowledge are used
here in the following sense. The data things in an
application are the fundamental, indivisible things. Data
things can be represented as simple constants or variables.
If an association between things cannot be defined as a
succinct, computable rule then it is an implicit association.
Otherwise it is an explicit association. An information
thing in an application is an implicit association between
data things. Information things can be represented as
tuples or relations. A knowledge thing in an application is
an explicit association between information and/or data
things. Knowledge can be represented either as programs
in an imperative language or as rules in a declarative
language.
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Conceptual Model

Items are a formalism for describing all data, information
and knowledge things in an application (Debenham, 1998).
Items incorporate two powerful classes of constraints, and
a single rule of decomposition is specified for items. The
key to this unified representation is the way in which the
"meaning" of an item, called its semantics, is specified.
The semantics of an item is a function that recognises the
members of the "value set" of that item. The value set of
an item will change in time x, but the item’s semantics
should remain constant. The value set of a data item at a
certain time x is the set of labels that are associated with a
population that implements that item at that time. The
value set of an information item at a certain time x is the
set of tuples that are associated with a relational
implementation of that item at that time. Knowledge items
have value sets too. Consider the rule "the sale price of
parts is the cost price marked up by a universal mark-up
factor"; this rule is represented by the item named
[part~sale-price, part~cost-price, mark-up] with a value set
of corresponding quintuples. The idea of defining the
semantics of items as recognising functions for the
members of their value set extends to complex, recursive
knowledge items too.

An item is a named triple A [ SA, VA, CA] with item
name A, SA is called the item semantics of A, VA is called
the item value constraints of A and CA is called the item set
constraints of A. The item semantics, SA, is a X-calculus
expression that recognises the members of the value set of
item A. The expression for an item’s semantics may
contain the semantics of other items {AI,..., An} called that
item’s components:

~ 1 1 n r ! 1
Yl"’Yml’"Ymn I SAt(Y1 ..... yml) ̂  ...... A

n n j(y~ 1 n
SAn(Yl ..... Ymn) ^ .... Ym i’"’Ymn) ]"

The item value constraints, VA, is a ~-calculus expression:

~ 1 1 n r 1 1
YI’"Yml’’’ymn I VAI(Y1 ..... Yml) ^ ...... ^

n n 1 n ¯
VAn(Yl ..... Ymn) ̂  K(yll .... Ym i""Ymn) 

that should be satisfied by the members of the value set of
item A as they change in time; so if a tuple satisfies SA
then it should satisfy VA (Johnson and Santos, 2000). The
expression for an item’s value constraints contains the
value constraints of that item’s components. The item set
constraints, CA, is an expression of the form:

CAt ̂  CAz ̂.-.^ CA, ̂ (L)A

where L is a logical combination of"
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¯ Card lies in some numerical range;
¯ Uni(Ai) for some i, < i < n,and
¯ Can(A i’ X) for some i, 1 < < n,where X is a non-empty

subset of {A/ ..... An} - {Ai};
subscripted with the name of the item A, "Uni(a)" means
that "all members of the value set of item a must be in this
association". "Can(b, A)" means that "the value set of the
set of items A functionally determines the value set of item
b". "Card" means "the number of things in the value set".
The subscripts indicate the item’s components to which
that set constraint applies.

For example, each part may be associated with a
cost-price subject to the "value constraint" that parts whose
part-number is less that 1,999 should be associated with a
cost price of no more than $300. A set constraint specifies
that every part must be in this association, and that each
part is associated with a unique cost-price. The
information item named part~cost-price then is:

part~cost-price[ ~.xy¯[ Spart(X ) ^ Scost-price (Y) 
costs(x, y) ]¯,

~,xy¯[ Vpart(X) ^ V cost-price(Y) ^
((x < 1999) -* (y < 300)) 

Cpart ̂ Ccost-price ^

(Uni(part) ^ Can( cost-price, {part} )part/cost_price 

Rules, or knowledge, can also be defined as items,
although it is neater to define knowledge items using
"objects". "Objects" are item building operators. The
knowledge item [part~sale-price, part/cost-price, mark-up]
which means "the sale price of parts is the cost price
marked up by a uniform markup factor" is:

[part/sale-price, part/cost-price, mark-up][
~,XlX2YlY2Z’[(

Spart/sale-price(X 1’ x2) ̂ Spart/cost -price(y 1, Y2) ̂
Smark_up(Z) ) ((I = yl )~ (x2 = z x y2))].,

2t, x I x2y 1Y2Z¯[

Vpart/sale_price(X1, x2) ̂ V part/cost_price(Y !, Y2) ̂

Vmark-up(Z) ) ^ (( Xl = ) 4( 2 > Y2 ))]°’

C [part/sale-price, part~cost-price, mark-up l ]

Two different items can share common knowledge and
so can lead to a profusion of maintenance links. This
problem can be avoided by using objects. An n-adic object
is an operator that maps n given items into another item for
some value ofn. Further, the definition of each object will
presume that the set of items to which that object may be
applied are of a specific "type". The type of an m-adic
item is determined both by whether it is a data item, an
information item or a knowledge item and by the value of
m. The type is denoted respectively by Dm, I m and Km.
Items may also have unspecified, or free, type which is



denoted by Xm. The formal definition of an object is
similar to that of an item. An object named A is a typed
triple A[E,F,G] where E is a typed expression called the
semantics of A, F is a typed expression called the value
constraints of A and G is a typed expression called the set
constraints ofA. For example, the part~cost-price item can
be built from the items part and cost-price using the costs
operator:

part~cost-price = costs(part, cost-price)

costs[~,p:XIQ:xl.~,xy.[ Sp(x) ̂  SQ(y) ̂ costs(x,y) 

~.p:X1Q:X1 .~.xy.[Vp(x) ^ V Q(y) 

((1000 < x < 1999) -~ < 300)) ]..

~,p:XIQ:xI.[ Cp ̂  CQ ̂

(Uni(P) ̂  Can(Q, {P}))v(costs,P,Q) ]°]

where V(costs, P, Q) is the name of the item costs(P, Q).
Data objects provide a representation of sub-typing.

Rules are quite clumsy when represented as items; objects
provide a far more compact representation. For example,
consider the [part~sale-price, part~cost-price, mark-up]
knowledge item which represents the rule "parts are
marked-up by a universal mark-up factor". This item can
be built by applying a knowledge object mark-up-rule of
argument type (I 2, 12, DI) to the items part~sale-price,
part~cost-price and mark-up. That is:

[part~sale-price, part~cost-price, mark-up] =
mark-up-rule(part/sale-price, part~cost-price, mark-up)

Objects also represent value constraints and set constraints
in a uniform way. A decomposition operation for objects is
defined in (Debenham, 1999).

A conceptual model consists of a set of items and a set
of maintenance links. The items are constructed by
applying a set of object operators to a set of fundamental
items called the basis. The maintenance links join two
items if modification to one of them necessarily means that
the other item has at least to be checked for correctness if
consistency is to be preserved. Item join provides the basis
for item decomposition (Debenham, 1997). Given items 
and B, the item with name A DE B is called the join of A
and B on E, where E is a set of components common to
both ,4 and B. Using the rule of composition ®, knowledge
items, information items and data items may be joined with
one another regardless of type. For example, the
knowledge item:

[cost-price, tax] [~,xy.[S cost.price(X) 

Stax(Y) ̂  x = y x 0.05].,

2Lxy.[Vcost.price(X) ^ V tax(Y) ̂  x < y]’,

C lcost-price, tax1 ]

can be joined with the information item part~cost-price on
the set {cost-price} to give the information item
part~cost-price~tax. In other words:

[cost-price, tax] ®{cost-price} part/cost-price =

part/cost-price~tax[ Z, xyz.[ S part( ) ^S cost.price ( ) ^

Stax(y) ^ costs(x,y) ̂  z = y x 0.05 ]’,

~,xyz°[ Vpart(X) ^ V cost_price(X) ^ V tax(Y) ^

((1000<x<1999) ~ (0<y<300)) ̂  (z<y)]°.

C part/cost.price/tax ]

In this way items may be joined together to form more
complex items. The ® operator also forms the basis of a
theory of decomposition in which each item is replaced by
a set of simpler items. An item I is decomposable into the
set of items D= {11,12 ..... In} if: I i has non-trivial
semantics for all i, I = 11 ® 12 ® ... ® In , where each join
is monotonic; that is, each term in this composition
contributes at least one component to 1. If item / is
decomposable then it will not necessarily have a unique
decomposition. The ® operator is applied to objects in a
similar way (Debenham (1999). The rule 
decomposition is: "Given a conceptual model discard any
items and objects which are decomposable". For example,
this rule requires that the item part/cost-price~tax should
be discarded in favour of the two items [cost-price, tax]
and part~cost-price.

Maintenance Links

A maintenance link joins two items in the conceptual
model if modification of one item means that the other
item must be checked for correctness, and maybe modified,
if the consistency of the conceptual model is to be
preserved (Ramirez and de Antonio, 2000). The number 
maintenance links can be very large. So maintenance links
can only form the basis of a practical approach to
knowledge base maintenance if there is some way of
reducing their density on the conceptual model.

For example, given two items A and B, where both are
n-adic items with semantics SA and SB respectively, if r~ is
permutation such that:

(WXlX2...Xn)[ SA(Xl,X2 ..... xn) ¢- SB(ff,(Xl,X2 ..... Xn)) 

then item B is a sub-item of item A. These two items
should be joined with a maintenance link. If A and B are
both data items then B is a sub-type ofA. Suppose that:

X= ED; where D=CAB (1)

for items X, D, A and B and objects E and C. Item X is a
sub-item of item D. Object E has the effect of extracting a
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sub-set of the value set of item D to form the value set of
item 3(. Item D is formed from items A and B using object
C. Introduce two new objects F and J. Suppose that
object F when applied to item A extracts the same subset
of item A’s value set as E extracted from the "left-side" (ie.
the "A-side") of D. Likewise J extracts the same subset of
B’s value set as E extracted from D. Then:

X= CGK; where G=FA and K=JB (2)

so G is a sub-item of A, andK is a sub-item of B. The form
(2) differs from (1) in that the sub-item maintenance links
have been moved one layer closer to the data item layer,
and object C has moved one layer away from the data item
layer. This is illustrated in Fig. 1. Using this method
repeatedly sub-item maintenance links between non-data
items are reduced to sub-type links between data items.

It is shown now that there are four kinds of maintenance
link in a conceptual model built using the unified
knowledge representation. Consider two items A and B,
and suppose that their semantics SA and SB have the form:

SA=~I , 1 ,,p .r S r,,1 ,,1
~l...~,ml...Jfnp t AI~..TI,...,~mlj ^ ...... ^

SAp(Y~ ..... YPmp)^ j(yl,..,YlI,..,YPmp)]"
=~ 1 I q, 1 1SB Yl ""Ynl ""Ynq [SBt(Yl ..... Ynl) ^ ...... ^

SBq(Y~ ..... yqq) ^ Kr,,l , I ,,q )].kJ 1 ’"’Jn I ’"’Jnq

SA contains (p + 1) terms and B contains (q +1)terms.

Let IX be a maximal sub-expression of SA ® B such that:

both SA -~ IX and SB -~ Ix (a)

where Ix has the form:

Figure I. Reducing sub-item relationships
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~,V1 ,,1 ,,r.r S r, 1 ,I a^
^ (Yl .....Ydr) ’Jl’..~’dl...Jdr t Cl~’i,.--O’dlJ ...... SCr r r

1 1 r .
L(YI""Yd~’"’Ydr)]

If IX is empty, ie. ’false’, then the semantics of^ and B are
independent. If I.t is non-empty then the semantics of A
and B have something in common and A and B should be
joined with a maintenance link.

Now examine Ix to see why A and B should be joined. If
Ix is non-empty and if both A and B are items in the basis
then:

A and B are a pair of basis items with logically dependent
semantics (b)

If Ix is non-empty and if A is not in the basis then there are
three cases. First, if:

then items A and B are equivalent and should be joined
with an equivalence link. Second if(c) does not hold and:

either SA o Ix or SB ~ ~t (d)

then either A is a sub-item of B, or B is a sub-item of A and
these two items should be joined with a sub-item link.
Third, if(c) and (d) do not hold then ifA is a minimal 
expression ofSA such that A4 Ix. Then:

either SAi(Y] ..... yJmj) E A, for somej (e)

1 , p .or j(yl 1 ’"’Ymj .... Ymp)E A (0

Both (e) and (0 may hold. If (e) holds then items A 
share one or more component items to which they should
each be joined with a component link. If (0 holds then
items A and B may be constructed with two object
operators whose respective semantics are logically
dependent. Suppose that item A was constructed by object
operator C then the semantics of C will imply:

= X,QI:Xill Q2:X~2 ...%:X]j °~,y~ ...yl l...yt~ r.[

Spl(y{ .....
yl ,) ^ ..... Spr(y[ ,...,y~ ) 

L(.vl ....Yd1 ,,",Yc~ r)]"

where the Qi’s take care of any possible duplication in the

Pj’s. Let E be the object E[~, T, ¢] then C is a sub-
object of E; that is, there exists a non-tautological object F
such that:



C =w E@M F (g)

for some set M and where the join is not necessarily
monotonic. Items A and B are weakly equivalent, written
A =w B, if there exists a permutation n such that:

00t X I x2""Xn)[SA(Xl’X2 ..... Xn) o SB(~(xl,x2 ..... Xn))]

where the xi are the ni variables associated with the i’th
component ofA. IfA is a sub-item of B and ifB is a sub-
item of A then items A and B are weakly equivalent.

If (g) holds then the maintenance links are of three
different kinds. If the join in (g) is monotonic then (g)
states that C may be decomposed into E and F. If the join
in (g) is not monotonic then (g) states that either w E
or C =w F. So, if the join in (g) is not monotonic then
either E will be weakly equivalent to C, or C will be a sub-
object of E.

It has been shown above that sub-item links between
non-data items may be reduced to sub-type links between
data items. So if:

¯ the semantics of the items in the basis are all logically
independent;

¯ all equivalent items and objects have been removed by
re-naming, and

¯ sub-item links between non-data items have been
reduced to sub-type links between data items

then the maintenance links will be between nodes marked
with:

¯ a data item that is a sub-type of the data item marked on
another node, these are called the sub-type links;

¯ an item and the nodes marked with that item’s
components, these are called the component links, and

¯ an item constructed by a decomposable object and nodes
constructed with that object’s decomposition, these are
called the duplicate links.

If the objects employed to construct the conceptual model
have been decomposed then the only maintenance links
remaining will be the sub-type links and the component
links. The sub-type links and the component links cannot
be removed from the conceptual model.

Unfortunately, decomposable objects, and so too
duplicate links, are hard to detect. Suppose that objects A
and B are decomposable as follows:

A =wE®MF

B =w E®MG

Then objects A and B should both be linked to object E. If
the decompositions of A and B have not been identified

then object E may not have been identified and the implicit
link between objects A and B may not be identified.

Conclusion
Maintenance links are used to maintain the validity of first-
order knowledge bases. Maintenance links join two items
in the conceptual model if modification of one of these
items could require that the other item should be checked
for correctness if the validity of the conceptual model is to
be preserved. The efficiency of maintenance procedures
depends on a method for reducing the density of the
maintenance links in the conceptual model. One kind of
maintenance link is removed by applying the rule of
knowledge decomposition (Debenham, 1999). Another 
removed by reducing sub-item relationships to sub-type
relationships (Debenham, 1998). And another is removed
by re-naming.
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