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Abstract

We describe a knowledge engineering approach by which
conceptual knowledge is extracted from an informal, se-
mantically weak medical thesaurus (UMLS) and automat-
ically converted into a formally sound description logics
system. Our approach consists of four steps: concept
definitions are automatically generated from the UMLS
source, integrity checking of taxonomic and partonomic
hierarchies is performed by the terminological classifier,
cycles and inconsistencies are eliminated, and incremental
refinement of the evolving knowledge base is performed
by a domain expert. We report on experiments with a ter-
minological knowledge base composed of 164,000 con-
cepts and 76,000 relations.

Introduction
Over several decades, an enormous body of medical knowl-
edge, e.g, disease taxonomies, medical procedures, anatom-
ical terms etc., has been assembled in a wide variety of
medical terminologies, thesauri and classification systems.
The conceptual structuring of a domain they allow is typi-
cally restricted to the provision of broader/narrower terms,
related terms or (quasi-)synonymous terms. This is most
evident in the UMLS, the Unified Medical Language Sys-
tem (McCray & Nelson 1995), an umbrella system which
covers more than 50 medical thesauri and classifications.
Its metathesaurus component contains more than 600,000
concepts which are structured in hierarchies by 134 seman-
tic types and 54 relations between semantic types. Their
semantics is shallow and intuitive, which is due to the fact
that their usage is primarily intended for humans engaged
in various forms of clinical knowledge management.

Given its size, evolutionary diversity and inherent het-
erogeneity, there is no surprise that the lack of a formal
foundation leads to inconsistencies, circular definitions, etc.
(Cimino 1998). This may not cause utterly severe problems
when humans are in the loop and its use is limited to disease
encoding, accountancy or document retrieval tasks. How-
ever, anticipating its use for more knowledge-intensive ap-
plications such as natural language understanding of medi-
cal narratives (Hahn, Romacker, & Schulz 1999) or medical
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decision support systems (Reggia & Tuhrim 1985), those
shortcomings might lead to an impasse.

As a consequence, formal models for dealing with med-
ical knowledge have been proposed, using representation
mechanisms based on conceptual graphs, semantic net-
works or description logics (Volot et al. 1994; Mays et al.
1996; Rector et al. 1997). Not surprisingly, however, there
is a price to be paid for more expressiveness and formal
rigor, viz, increasing modeling efforts and, hence, increas-
ing maintenance costs. Therefore, concrete systems mak-
ing full use of this rigid approach, especially those which
employ high-end knowledge representation languages are
usually restricted to rather small subdomains.

The knowledge bases developed within the framework of
the above-mentioned terminological systems have all been
designed from scratch - without making systematic use of
the large body of knowledge contained in those medical ter-
minologies. An intriguing approach would be to join the
massive coverage offered by informal medical terminolo-
gies with the high level of expressiveness supported by for-
mal inferencing systems, as developed in the AI knowledge
representation community, in order to develop formally
solid medical knowledge bases on a larger scale. This idea
has already been fostered by Pisanelli, Gangemi, & Steve
(1998) who extracted knowledge from the UMLS seman-
tic network as well as from parts of the metathesaurus and
merged them with logic-based top-level ontologies from
various sources. In a similar way, Spackman & Campbell
(1998) describe how SNOMED (C6t6 1993) evolves 
a multi-axial coding system into a formally founded ontol-
ogy. Unfortunately, the efforts made so far are entirely fo-
cused on generalization-based reasoning along is-a hierar-
chies and lack a reasonable coverage of partonomies.

Part-Whole Reasoning
As far as medical knowledge is concerned, two main
hierarchy-building relationships can be identified, viz. is-a
(taxonomic) and part-whole (partonomic) relations. Unlike
generalization-based reasoning in concept taxonomies, no
fully conclusive mechanism exists up to now for reasoning
along part-whole hierarchies in description logic systems.
For medical domains, however, the exclusion of part-whole
reasoning is far from adequate. Anatomical knowledge,
a central portion of medical knowledge, is principally or-
ganized along part-whole hierarchies. Hence, any proper
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Figure 1: SEP Triplets: Partitive Relations within Tax-
onomies

medical knowledge representation has to take account of
both hierarchy types (Haimowitz, Patil, & Szolovits 1988).

Various approaches to the reconstruction of part-
whole reasoning within the object-centered representation
paradigm are discussed by Artale et al. (1996). In the
description logics community several language extensions
have been proposed based on special constructors for part-
whole reasoning (Rector et al. 1997; Horrocks & Sattler
1999), though at the cost of increasing computational com-
plexity. Motivated by informal approaches sketched by
Schmolze & Mark (1991) we formalized a model of part-
whole reasoning (Hahn, Schulz, & Romacker 1999) that
does not exceed the expressiveness of the well-understood,
parsimonious concept language .AEC (Schmidt-Schaul3 
Smolka 1991))

Our proposal is centered around a particular data struc-
ture, so-called SEP triplets, especially designed for part-
whole reasoning (cf. Figure 1). They define a characteristic
pattern of IS-A hierarchies which support the emulation of
inferences typical of transitive PART-OF relations. In this
formalism, the relation ANATOMICAL-PART-OF describes
the partitive relation between physical parts of an organism.

A triplet consists, first of all, of a composite ’structure’
concept, the so-called S-node (e.g., HAND-STRUCTURE).
Each ’structure’ concept subsumes both an anatomical en-
tity and each of the anatomical parts of this entity. Unlike
entities and their parts, ’structures’ have no physical corre-
late in the real world -- they constitute a representational
artifact required for the formal reconstruction of systematic
patterns of part-whole reasoning. The two direct subsumees
of an S-node are the corresponding E-node (’entity’) and 
node (’part’), e.g., HAND and HAND-PART, respectively.
Unlike an S-node, these nodes refer to specific ontological
objects. The E-node denotes the whole anatomical entity
to be modeled, whereas the P-node is the common sub-
sumer of any of the parts of the E-node. Hence, for ev-
ery P-node there exists a corresponding E-node for the role
ANATOMICAL-PART-OF. Some basic anatomical relations
in terms of SEP triplets are illustrated in Figure 2.

I.A£C allows for the construction of hierarchies of concepts
and relations, where E denotes subsumption and -- definitional
equivalence. Existential (B) and universal (V) quantification, nega-
tion (-~), disjunction (I-1) and conjunction (t_l) are supported. 
filler constraints (e.g., typing by (7) are linked to the relation name
R by a dot, BR.(7.

Figure 2: Partonomic Hierarchy of the Concept HAND

The reconstruction of the relation ANATOMICAL-PART-
OF by taxonomic reasoning proceeds as follows. Let us
assume that CE and DE denote E-nodes, Cs and Ds de-
note the S-nodes that subsume CE and DE, respectively,
and Cp and Dp denote the P-nodes related to CE and DE,
respectively, via the role ANATOMICAL-PART-OF (cf. Fig-
ure 1). These conventions can be captured by the following
terminological expressions:

CE E_ Us E Dp E_ Ds (1)

DE E_ DS (2)
The P-node is defined as follows (note the disjointness

between D~ and Dp):

Dp - Ds n -~DE r7 Banatomical-part-of .DE (3)

Since CE is subsumed by Dp (1) we infer that the rela-
tion ANATOMICAL-PART-OF holds between CE and DE :

C E E 3anatomical-part-of.De (4)

Knowledge Import and Refinement
Our goal is to extract conceptual knowledge from two
highly relevant subdomains of the UMLS, viz. anatomy and
pathology, in order to construct a formally sound knowl-
edge base using a terminological knowledge representation
language. This task will be divided into four steps: (I)
the automated generation of terminological expressions, (2)
their submission to a terminological classifier for consis-
tency checking, (3) the manual restitution of formal consis-
tency in case of inconsistencies, and, finally, (4) the man-
ual rectification and refinement of the formal representation
structures.
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Figure 3: Semantic Relations in the UMLS Metathesaurus

Step 1: Automated Generation of Terminological Ex-
pressions. Sources for concepts and relations were the
UMLS semantic network and the mrrel, mrcon and mrsty
tables of the 1999 release of the UMLS metathesaurus.
The mrrel table which contains approximately 7,5 million
records (cf. Figure 3) exhibits the semantic links between
two UMLS CUIs (concept unique identifier), 2 the mrcon
table contains the concept names and mrsty keeps the se-
mantic type(s) assigned to each CUI. These tables, avail-
able as ASCII files, were imported into a Microsoft Access
relational database and manipulated using SQL embedded
in the VBA programming language. For each CUI in the
mrrel subset its alphanumeric code was substituted by the
English preferred term found in mrcon.

After a manual remodeling of the 135 top-level concepts
and 247 relations of the UMLS semantic network, we ex-
tracted, from a total of 85,899 concepts, 38,059 anatomy
and 50,087 pathology concepts from the metathesaurus.
The criterion for the inclusion into one of these sets was
the assignment to predefined semantic types. Also, 2,247
concepts were found to be included into both sets, anatomy
and pathology. Since we wanted to keep the two subdo-
mains strictly disjoint, we maintained these 2,247 concepts
duplicated, and prefixed all concepts by ANA- or PAT- ac-
cording to their respective subdomain. This can be justi-
fied by the observation that these hybrid concepts exhibit,
indeed, multiple meanings. For instance, TUMOR has the
meaning of a malignant disease on the one hand, and of an
anatomical structure on the other hand.

As target structures for the anatomy domain we chose
SEP triplets. These were expressed in the terminological
language LOOM which we had previously extended by a
special DEFTRIPLET macro (cf. Table 1 for an example).
Only UMLS part-of, has-part and is-a relation attributes
are considered for the construction of taxonomic and parto-
nomic hierarchies. Hence, for each anatomy concept, one
SEP triplet is created. The result is a mixed IS-A and PART-
WHOLE hierarchy.

For the pathology domain, we treated CHD (child) and
RN (narrower relation) from the UMLS as indicators 

2As a coding convention in UMLS, any two CUIs must be con-
nected by at least a shallow relation (in Figure 3, CHilD relations
in the column REL are assumed between CUIs). These shallow re-
lations may be refined in the column RELA, ifa thesaurus is avail-
able which contains more precise information. Some CUIs are
linked either by pan-of or is-a. In any case, the source thesaurus
for the relations and the CUIs involved is specified in the columns
X and Y (e.g., MeSH 1999, SNOMED International 1998).

(deftriplet HEART
:is-primitive HOLLOW-VISCUS
:has-part (:p-and

FIBROUS-SKELETON-OF-HEART
WALL-OF-HEART
CAVITY-OF-HEART
CARDIAC-CHAMBER-NOS
LEFT-SIDE-OF-HEART
RIGHT-SIDE-OF-HEART
AORTIC- VALVE
PULMONARY- VALVE

Table 1: Generated Triplets in LOOM Format

taxonomic links. No part-whole relations were considered,
since this category does not apply to the pathology domain.
Furthermore, for all anatomy concepts contained in the def-
initional statements of pathology concepts the ’S-node’ is
the default concept to which they are linked, thus enabling
the propagation of roles across the part-whole hierarchy.

In both subdomains, shallow relations, such as the ex-
tremely frequent sibling SIB relation, were included as
comments into the code to give some heuristic guidance for
the manual refinement phase.

Step 2: Submission to the LOOM Classifier. The
import of UMLS anatomy concepts resulted in 38,059
DEFTRIPLET expressions for anatomical concepts and and
50,087 DEFCONCEPT expressions for pathological con-
cepts. Each DEFTRIPLET was expanded into three DEF-
CONCEPT (S-, E-, and P-nodes), and two DEFRELATION
(ANATOMICAL-PART-OF-X, INV- ANATOMICAL- PART-OF-
x) expressions, summing up to 114,177 concepts. This
yielded (together with the concepts from the semantic net-
work) a total of 240,764 definitory LOOM expressions.

From 38,059 anatomy triplets, 1219 DEFTRIPLET state-
ments exhibited a :HAS-PART clause followed by a list of
a variable number of triplets, containing more than one
argument in 823 cases (average cardinality: 3.3). 4043
DEFTRIPLET statements contained a :PART-OF clause, only
in 332 cases followed by more than one argument (aver-
age cardinality: 1.1). The resulting knowledge base was
then submitted to the terminological classifier and checked
for terminological cycles and coherence. In the anatomy
subdomain, one terminological cycle and 2328 incoherent
concepts were found, in the pathology subdomain 355 ter-
minological cycles though not a single incoherent concept
were determined (cf. Table 2).

Step 3: Manual Restitution of Consistency. The in-
consistencies of the anatomy part of the knowledge base
identified by the classifier could all be traced back to the
simultaneous linkage of two triplets by both is-a and part-
of links, an encoding that raises a conflict due to the dis-
jointness required for corresponding P- and E-nodes. In
most of these cases the affected parents belonged to a class
of concepts that obviously cannot be appropriately mod-
eled as SEP triplets, e.g., SUBDIVISION-OF-ASCENDING-
AORTA, ORGAN-PART. The meaning of each of these con-
cepts almost paraphrases that of a P-node, so that in these
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II Anatomy Pathology
Triplets 38,059
defconcept
statements 114,177 50,087
cycles 1 355
inconsistencies 2,328 0

Table 2: Classification Results for the Concept Import

cases the violation of the SEP-internal disjointness condi-
tion was resolved by substituting the involved triplets with
simple LOOM concepts, by matching them with already ex-
isting P-nodes or by disabling IS-A or PART-OF links.

In the pathology part of the knowledge base, we expected
a large number of terminological cycles, as a consequence
of interpreting the thesaurus-style narrower term and child
relations through taxonomic subsumption (IS-A). Bear-
ing in mind the size of the knowledge base, we consider
355 cycles a tolerable amount. Those cycles were primar-
ily due to very similar concepts, e.g., ARTERIOSCLERO-
SIS vs. ATHEROSCLEROSIS, AMAUROSIS vs. BLINDNESS,
and residual categories ("other", "NOS" = not otherwise
specified). These were directly inherited from the source
terminologies and are notoriously difficult to interpret out
of their definitional context, e.g., OTHER-MALIGNANT-
NEOPLASM-OF-SKIN vs. MALIGNANT-NEOPLASM-OF-
SKIN-NOS. The cycles were analyzed and a negative list
which consisted of 630 concept pairs was manually derived.
In a subsequent extraction cycle we incorporated this list in
the automated construction of the LOOM concept defini-
tions, and given these new constraints, a fully consistent
knowledge base was generated.

Step 4: Manual Rectification and Refinement of the
Knowledge Base. This step - when performed for the
whole knowledge base - is time-consuming and requires
broad and in-depth medical expertise. An analysis of ran-
dom samples from both subdomains is currently being per-
formed by a domain expert. The preliminary data we supply
refer to the analysis of two random samples of each one-
hundred anatomy and one-hundred pathology concepts.

From the experience we gained so far, the following
workflow steps can be derived:

¯ Checking the correctness of both the taxonomic and
partitive hierarchies. Taxonomic and partitive links are
manually added or removed. Primitive subsumption
is substituted by non-primitive subsumption whenever
possible. This is a crucial point, because the automat-
ically generated hierarchies contain only information
about the parent concepts and necessary conditions. As
an example, the automatically generated definition of
DERMATITIS includes the information that it is an IN-
FLAMMATION, and that the role HAS-LOCATION must
be filled by the concept SKIN. An INFLAMMATION that
HAS-LOCATION SKIN, however, cannot automatically
be classified as DERMATITIS.

Results: Taxonomic links had to be removed from 8
out of 100 sampled pathology concept definitions, but
from none of the anatomy concept definitions. On the
contrary, in 68 cases from this sample, anatomy con-

\

IsA between P - and S - nodes i Anltomlr.al-Pad.Of (
Has-Anatomical-Part

Figure 4: Part-whole Reasoning Patterns with SEP Triplets

cept definitions required the inclusion of anatomic or
partonomic links. Often, necessary taxonomic or parto-
nomic parents were already available, but not coded
as UMLS parents or broader concepts. 7 from 100
anatomy concepts had to be considered as misclassified
by the UMLS.

¯ Check of the :has-part arguments assuming ’real
anatomy’. In the UMLS sources part-of and has-part
relations are considered as symmetric. According to
our transformation rules, the attachment of a role HAS-
ANATOMICAL-PART tO an E-node BE, with its range
restricted to AE implies the existence of a concept A
for the definition of a concept B. On the other hand, the
classification of AE as being subsumed by the P-node
Be, the latter being defined via the role ANATOMICAL-
PART-OF restricted to BE, implies the existence of BE
given the existence of AE. These constraints do not al-
ways conform to ’real’ anatomy, i.e., anatomical con-
cepts that may exhibit pathological modifications. Fig-
ure 4 (left) sketches a concept A that is necessarily
ANATOMICAL-PART-OF a concept B, but whose exis-
tence is not required for the definition of B. This is typ-
ical of the results of surgical interventions, e.g., a large
intestine without an appendix.

Results: The analysis of 15 triplet definitions that ex-
hibit automatically generated :HAS-PART clauses re-
vealed that 34% of the concepts should be eliminated
from the :HAS-PART list in order not to obviate a co-
herent classification of pathologically modified anatom-
ical objects) The opposite situation is also common
(cf. Figure 4, right): the definition of AE does not
imply that the role ANATOMICAL-PART-OF be filled by
BE, but BE does imply that the inverse role be filled
by AE. As an example, a LYMPH-NODE necessarily
contains LYMPH-FOLLICLES, but there exist LYMPH-
FOLLICLES that are not part of a LYMPH-NODE.

¯ Analysis of the sibling relations and defining concepts
as being disjoint. In UMLS, SIB relates concepts that
share the same parent in a taxonomic or partonomic hi-
erarchy. Pairs of sibling concepts may have common

3In the example of Table 1, the concepts printed in italics, viz.
AORTIC-VALVE and PULMONARY-VALVE should be eliminated
from the :HAS-PART list, because they may be missing in certain
cases as a result of congenital malformations, inflammatory pro-
cesses or surgical interventions.
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descendants or not. If not, they constitute the root of two
disjoint subtrees. In a taxonomic hierarchy, this means
that one concept implies the negation of the other (e.g.,
a benignant tumor cannot be a malignant one, et vice
versa). In a partitive hierarchy, this can be interpreted as
spatial disjointness, viz. one concept does not spatially
overlap with another one. As an example, ESOPHAGUS
and DUODENUM are spatially disjoint, whereas STOM-
ACH and DUODENUM are not (they share a common
transition structure, called PYLORUS), such as all neigh-
bor structures that have a surface or region in common.
Spatial disjointness can be modeled such that the defini-
tion of the S-node of the concept A implies the negation
of the S-node of the concept B.
Results: The large number of sibling concepts (on the
average 7.3 siblings per concept in the anatomy, 8.8 in
the pathology subdomain) makes the modeling of dis-
jointness a time-consuming task, as every pair of con-
cepts must be analyzed. At first glance, our data indicate
that conceptual disjointness holds for at least two-thirds
of the sibling concepts in both domains, and spatial dis-
jointness for over three quarters in the anatomy domain.

¯ Completion and modification of anatomy-pathology re-
lations. Surprisingly, only very few pathology con-
cepts contained an explicit reference to a corresponding
anatomy concept. These relations must, therefore, be
added by a domain expert. In each case, the decision
must be made whether the E-node or the S-node has to
be addressed as the target concept for modification. In
the first case, the propagation of roles across part-whole
hierarchies is disabled, in the second case it is enabled.
Results: In an analysis of a random sample of 100
pathology concepts, only 17 were found to be linked
with an anatomy concept. In 15 cases, the default link-
age to the S-node was considered to be correct, in one
case the linkage to the E-node was preferred. In another
case, the linkage was considered false.

Conclusions
Instead of developing sophisticated medical knowledge
bases from scratch, we here propose a ’conservative’ ap-
proach -- reuse existing large-scale resources, but refine
the data from these resources so that advanced representa-
tional requirements imposed by more expressive knowledge
representation languages are met.

The knowledge engineering approach we propose does
exactly this. It provides a formally solid description log-
ics framework with a modeling extension by SEP triplets
so that both taxonomic and partonomic reasoning are sup-
ported equally well. While pure automatic conversion from
semi-formal to formal environments causes problems of ad-
equacy of the emerging representation structures, the refine-
ment methodology we propose already inherits its power
from the terminological reasoning framework. In our con-
crete work, we found the implications of using the termi-
nological classifier, the inference engine which computes
subsumption relations, of utmost importance and of out-

226 FLAIRS-2001

standing heuristic value. Hence, the knowledge refinement
cycles are truly semi-automatic, fed by medical expertise on
the side of the human knowledge engineer, but also driven
by the reasoning system which makes explicit the conse-
quences of (im)proper concept definitions.
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