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Abstract
An inference engine for a hybrid representation scheme
based on neurules is presented. Neurules are a kind of
hybrid rules that combine a symbolic (production rules)
and a connectionist representation (adaline unit). The
inference engine uses a connectionist technique, which is
based on the ’firing potential’, a measurement of the firing
tendency of a neurule, and symbolic pattern matching. It is
proved to be more efficient and natural than pure
connectionist inference engines. Explanation of ’how’ type
can be provided in the form of if-then symbolic rules.

1. Introduction
There have been efforts at combining expert systems and
neural networks (connectionism) into hybrid systems, 
order to exploit their benefits (Medsker 1994). In some 
them, called embedded systems, a neural network is used
in the inference engine of an expert system. For example,
in NEULA (Tirri 1995) a neural network selects the next
rule to fire. Also, LAM (Medsker 1994) uses two neural
networks as partial problem solvers. However, the
inference process in those systems, although gains
efficiency, lacks the naturalness and the explanation
capability of the symbolic component. This is so, because
pre-eminence is given to the connectionist framework.

On the other hand, connectionist expert systems are
integrated systems that represent relationships between
concepts, considered as nodes in a neural network.
Weights are set in a way that makes the network infer
correctly. The system in (Gallant 1993) is a popular such
system, whose inference engine is called MACIE. Two
characteristics of MACIE are: its ability to reason from
partial data and its ability to provide explanations in the
form of if-then roles. However, its inference process lacks
naturalness. Again, this is due to the connectionist
approach.

To improve the performance of connectionist expert
systems, the "recency inference engine" and its
corresponding explanation algorithm are introduced in
(Ghalwash 1998). In order to assess its performance,

* Alphabetical order.

which is better than MACIE, the ’convergence rate’ is
used, which is based on the number of known and
necessary/required inputs. However, this measure does not
take into account the internal number of computations
made, which for large networks may be of importance.

In this paper, we present a hybrid inference engine and
its associated explanation mechanism. The inference
engine is related to neurules, a hybrid role-based
representation scheme integrating symbolic rules with
neurocomputing, which gives pre-eminence to the
symbolic component (Hatzilygeroudis and Prentzas 2000a,
2000b). Apart from naturalness, experimental results
demonstrate an improvement to the efficiency of the
inference compared to those in (Gallant 1993) and
(Ghalwash 1998).

The structure of the paper is as follows. Section 2
presents neurules and Section3 the hybrid inference
process introduced here with an example. In Section 4, the
explanation mechanism is presented. Finally, Section 5
presents some experimental results and concludes.

2. Neurules

2.1 Syntax and Semantics

Neurules are a kind of hybrid rules. The form of a neurule
is depicted in Fig.la. Each condition Ci is assigned a
number ~f,, called its significance .factor. Moreover, each
rule itself is assigned a number ~3¢0, called its bias factor.
Internally, each neurule is considered as an adaline unit
(Fig.lb). The inputs Ci (i=l ..... n) of the unit are the
conditions of the rule. The weights of the unit correspond
to the significance factors of the neurule and its bias is the
bias factor of the neurule. Each input takes a value from
the following set of discrete values: [1 (true), -1 (false), 
(unknown)]. The output D, which corresponds to the
conclusion (decision) of the rule, is calculated via the
formulas: n

D= f(a), a=sfo + ~fiCi (1)
i=l
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where a is the activation value and f(x) the activation
function, a threshold function:

I ifa>0
f(a) = otherwise (2)

Hence, the output can take one of two values, ’- 1’ and ’ 1 ’,
representing failure and success of the rule respectively.

D
(sfo) if C1 (sfl),

C2 (sf2),

c,, (sf,,)

then D
Ci C2 C,,

(a) (b)

Fig.! (a) Form of a neurule (b) corresponding adaline 

The general syntax of a condition C; and the conclusion D :

<condition>::= <variable> <l-predicate> <value>
<conclusion>::= <variable> <r-predicate> <value>

where <variable> denotes a variable, that is a symbol
representing a concept in the domain, e.g. ’sex’, ’pain’ etc,
in a medical domain. A variable in a condition can be
either an input variable or an intermediate variable,
whereas a variable in a conclusion can be either an
intermediate or an output variable or both. An input
variable takes values from the user (input data), whereas
intermediate and output variables take values through
inference, since they represent intermediate and final
conclusions respectively. <l-predicate> and <r-predicate>
are one of {is, isnot}. <value> denotes a value. It can be a
symbol or a number. Neurules are distinguished in
intermediate and output rules, depending on whether their
conclusions contain intermediate or output variables
respectively.

2.2 An Example Neurule Base
Neurules are constructed either directly, from empirical
data, or by converting symbolic rules. In both cases, each
neurule is individually trained via the LMS algorithm.
Normally, for each possible conclusion one neurule is
produced. However, in case of inseparability in the
training set, where special techniques are used
(Hatzilygeroudis and Prentzas 2000c, 2001), more than
one neurule are produced with the same conclusion. The
conditions of a neurule are sorted so, that [sfd >- Isf2l > ... >

I~f,,I.
To illustrate the functionalities of our system, we use as

an example the one presented in (Gallant 1993). It contains
training data dealing with acute theoretical diseases of the
sarcophagus. There are six symptoms (Swollen feet, Red
ears, Hair loss, Dizziness, Sensitive aretha, Placibin
allergy), two diseases (Supercilliosis, Namastosis), whose
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diagnoses are based on the symptoms and three possible
treatments (Placibin, Biramibio, Posiboost). Also,
dependency information is provided. We used the
dependency information to construct the initial neurules
and the training data provided to train them. The produced
knowledge base, which contains six neurules (DR1-DR6),
is illustrated in Fig.2.

DRI: (-0.4) if HairLoss is true (3.6),
SwollenFeet is true (3.6),
RedEars is true (-0.8)

then Disease is Supercilliosis

DR2: (1.4) if Dizziness is true (4.6),
SensitiveAretha is true (1.8),
HairLoss is true (1.8)

then Disease is Namastosis

DR3: (-2.2) if PlacibinAllergy is true (-5.4),
Disease is SuperciUiosis (4.6)
Disease is Namastosis (1.8),

then Treatment is Placibin

DR4: (-4.0) if HairLoss is true (-3.6),
Disease is Namastosis (3.6),
Disease is Supercilliosis (2.8)

then Treatment is Biramibio

DR5: (-2.2) if Treatment is Biramibio (-2.6),
Treatment is Placibin (1.8)

then Treatment is Posiboost

DR6: (-2.2) if Treatment is Placibin (-1.8),
Treatment is Biramibio (1.0)

then Treatment is Posiboost

Fig.2 An example neurule base.

3. The Hybrid Inference Engine

3.1 The Process
The hybrid inference engine implements the way neurules
co-operate to reach a conclusion, which is based on the
’firing potential’, a measurement of the firing tendency of
a neurule, which is similar to the ’convergence ratio’
introduced in (Ghalwash 1998). The basic idea is: in each
inference step, consider first the neurule with the largest
firing potential, because it is the most likely to fire.

Normaly, the output of a neurule is computed according
to Eq. (1). However, it is possible to deduce the output of 
neurule without knowing the values of all of its conditions.
To achieve this, we define for each neurule the known sum
(kn-sum) and the remaining sum (rein-sum) as follows:

kn - sum = sfo + ~ sfiCi (3)
c~EE

rem - sum = ~" I sfi I (4)
c~ ~ U



where E is the set of its evaluated conditions, U the set of
its unevaluated conditions and Ci is the value of the i~h
condition. So, ’known-sum’ is the weighted sum of the
values of the already known (i.e. evaluated) conditions
(inputs) of the corresponding neurule and ’rem-sum’
represents the largest possible weighted sum of the
remaining (i.e. unevaluated) conditions of the neurule. 
]kn-suml > rem-sum, for a certain neurule, then evaluation
of its conditions can stop, because its output can be
deduced regardless of the values of the remaining
unevaluated conditions. So, we define the firing potential
(fp) ofa neurule:

I kn-sum l
.fp - (4)

rem-sum

which is an estimate of its tendency to make its output
’+1’. Whenever fp > 1, the rule evaluates to ’1’ (true), 
kn-sum > 0 or to ’-1’ (false), if kn-sum < 0. In the first
case, we say that the neurule is fired, whereas in the
second that it is blocked. Notice thatfp has meaning only if
rem-sum ~ O. If rem-sum = 0, all the conditions have been
evaluated and its output is evaluated according to kn-sum.

The inference process is as follows, where the ’working
memory’ (WM) is a place for keeping data.

t. Initially, set the .fps of all the neurules to their bias
factors. If there is initial input data in the WM, find all
the affected neurules and update their fps; they become
the participating neurules. Otherwise, regard all neurules
as participating.

2. Do the following,
2. I if there is a participating neurule with (fp > I or

rein-sum = 0) then if (kJ,-sum > 0), mark the rule as
fired and its conclusion as ’true’ and put it in the
WM, otherwise (kn-sum < 0), mark the rule as
blocked and if there is no other unevaluated neurule
with the same conclusion, mark its conclusion as
’false’ and put it in the WM.

2.2 Remove the above evaluated neurule from the
participating rules.

2.3 If the condition put in the WM is an intermediate
one, find the affected neurules, put them in the
participating neurules and update theirfps.

until there is no participating neurule withfp > I or tern-
sum = O.

3. While there are participating neurules do,
3.1 From the participating neurules select the one with

the maximum fp. If there are no participating
neurules, select an unevaluated one with the
maximumJp.

3.2 Consider the first unevaluated condition of the
selected neurule. If it contains an input variable, ask
the user for its value and put it in the WM. If it
contains an intermediate variable instead, find an
unevaluated neurule with the maximum fp that
contains the variable in its conclusion and execute
this step recursively taking this neurule as the
selected.

3.3 Clear participating rules. According to the input
data, find all the affected neurules, update theirfps
and put them in the participating neurules.

3.4 (the same as step 2).
4. If there are no conclusions in the WM containing output

variables, stop (failure). Otherwise, display the
conclusions and stop (success).

A neurule is evaluated, if it is fired or blocked,
otherwise it is unevaluated. Also, affected neurules are
those unevaluated neurules containing at least a
condition with the same variable as that of the
conclusion put in the WM.

3.2 An Example Inference
In this section, a hand tracing of an example inference
from the neurule base in Fig. 2 is presented. Notice that
DRI and DR2 are intermediate neurules, DR3 and DR4
are simultaneously intermediate and output neurules,
whereas DR5 and DR6 are output neurules. Initially, thefp
of each neurule is set to its bias factor.

Step 1
WM: [’HairLoss is true’ (TRUE)I (Initial data)
Affected neurules: [DRI, DR2, DR4]
Updatedfps: 13.2/4.41 = 0.73 (DRI), 13.2/6.41 = 0.5 (DR2),

I-7.6/6.41 = 1.19 (DR4)
Partcipating neurules: [DRI, DR2, DR4]

Step 2
Step 2.1 (DR4 hasfp > 1 and kn-sum < O)

Blocked neurules: [DR4]
WM: l’HairLoss is true’ (TRUE),

’Treatment is Biramibio’ (FALSE)}

Step 2.2
Participating neurules: [DRI, DR2]

Step 2.3
Affected neurules: [DR5, DR6]
Partcipating neurules: [DR5, DR6, DRI, DR2]
Updated],bs: 10.4/1.81 = 0.22 (DR5), I-3.2/I .81 = 1.78 (DR6)

Step 2
Step 2.1 (DR6 has./~b > 1 and kn-sum < 0).

Blocked neurules: [DR6, DR4]

Step 2.2
Participating neurules: [DR5, DRI, DR2]

Step 3

Step 3.1
Selected neurule: DRI

Step 3.2
User data: ’SwollenFeet is true’ (FALSE)
WM: l’HairLoss is true’ (TRUE),

"Treatment is Biramibio’ (FALSE),
’SwollenFeet is true’ (FALSE)}

Step 3.3
Participating neurules: [ ]
Affected neurules: [DR 1 ]
Updatedfps: I-0.4/0.81 = 0.5 (DRI)
Participating neurules: [DR1 ]

Step 3.4 (no effect)
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Step 3.1
Selected neurule: DRI

Step 3.2
User data: ’RedEars is true’ (FALSE)
WM: [’HairLoss is true’ (TRUE),

’Treatment is Biramibio’ (FALSE),
’SwollenFeet is true’ (FALSE),
’RedEars is true’ (FALSE)]

Step 3.3
Participating neurules: [ ]
Affected neurules: [DRl ]
Updatedfps: kn-sum = 0.4, rein-sum = 0
Participating neurules: [DR I ]

Step 3.4 (2)

Step 3.4.1 (2.1)
Fired neurules: [DRI]
WM: [’HairLoss is true’ (TRUE),

’Treatment is Biramibio’ (FALSE),
’SwollenFeet is true’ (FALSE),
’RedEars is true’ (FALSE),
’Disease is Supercilliosis’ (TRUE)}

Step 3.4.2 (2.2)
Participating neurules: [ ]

Step 3.4.3 (2.3)
Affected neurules: [DR3] (DR4 has been evaluated)
Participating neurules: [DR3]
Updatedfps: 12.4/7.21 = 0.33 (DR3)
(no neurule withfp > I)

Step 3.1
Selected neurule: DR3

Step 3.2
User data: ’PlacibinAllergy is true’ (FALSE)
WM: {’HairLoss is true’ (TRUE),

’Treatment is Biramibio’ (FALSE),
’SwollenFeet is true’ (FALSE),
"RedEars is true’ (FALSE),
’Disease is Supercilliosis’ (TRUE),
’PlacibinAllergy is true’ (FALSE)I

Step 3.3
Affected neurules: [DR3]
Updated fps: [7.8/I.81 = 4.33 (DR3)
Participating neurules: [DR3]

Step 3.4 (2)

Step 3.4.1 (2.1)
Fired neurules: [DRI, DR3]
WM: {’HairLoss is true’ (TRUE),

’Treatment is Biramibio’ (FALSE),
’SwollenFeet is true’ (FALSE),
’RedEars is true’ (FALSE),
’Disease is Supercilliosis’ (TRUE),
’PlacibinAllergy is true’ (FALSE),
’Treatment is Placibin’ (TRUE)}

Step 3.4.2 (2.2)
Participating neurules: [ ]

Step 3.4.3 (2.3)
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Affected neurules: [DR5]
Participating neurules: [DRS]
Updatedfps: kn-sum = 2.2, rein-sum = 0

Step 3.4.1 (2.1)
Fired neurules: [DRS, DR3, DRI]
WM: {’HairLoss is true’ (TRUE),

’Treatment is Biramibio’ (FALSE),
’SwoIlenFeet is true’ (FALSE),
’RedEars is true’ (FALSE),
’Disease is Supercilliosis’ (TRUE),
’PlacibinAllergy is true’ (FALSE),
’Treatment is Placibin’ (TRUE),
’Treatment is Posiboost’ (TRUE)I

Step 3.4.2 (2.2)
Participating neurules: [ ]

Step 3.4.3 (2.3)
Participating neurules: [ ]

So, we have the following final conclusions:

Output data: ’Treatment is Placibin’, ’Treatment is Posiboost’

4. The Explanation Mechanism
The explanation mechanism justifies inferences by
producing a set of simple if-then rules, explaining how the
conclusions were reached. The conclusions of the
explanation rules contain the inferred output variables.
Their conditions contain a subset of the input and
intermediate variables participating in drawing the
conclusions, that is those variables whose values were
either given by the user or inferred during the inference
process, possibly with changes to their predicates. More
specifically, the conditions in the explanation rules are the
ones with the most positive contribution in producing the
output of the corresponding neurule. We call them positive
conditions, whereas the rest negative conditions.

In case a neurule’s output evaluates to ’1’, the positive
conditions are either the ones evaluated to true (’1’) and
having a positive significance factor or the ones evaluated
to false (’-l’) and having a negative significance factor. 
case a neurule’s output evaluates to ’-1’, the negative
conditions are either the ones evaluated to true (’1’) and
having a negative significance factor or the ones evaluated
to false (’-l’) and having a positive significance factor.
Conditions that are unknown or negative are not included
in explanation rules. Furthermore, some of the positive
conditions may be also not included, based on the fact that
they are not necessary. The unnecessary positive
conditions are the ones with the smallest absolute
significance factors.

For each of the fired output neurules, the explanation
mechanism generates an if-then rule whose conclusion is
the neurule’s conclusion and its conditions are the
necessary positive conditions of the neurule. Possible
changes are made to the predicates according to the values
of the conditions (e.g. if a necessary positive condition is
evaluated to false, its predicate is changed from ’is’ to
’isnot’ and vice versa). In addition, for each condition



containing an intermediate variable, an if-then rule is
produced based on an evaluated neurule having that
condition as its conclusion. This process recurses.

Table 1. The extracted explanation rules

EXRI EXR2
if HairLoss is true if HairLoss is true,
then Treatment isnot RedEars is false
Biramibio then Disease is Supercilliosis
EXR3 EXR4
if PlacibinAllergy is true, if Treatment isnot Biramibio,

Disease is Supercilliosis Treatment is Placibin
then Treatment is Placibin then Treatment is Posiboost.

The explanation rules extracted for the example
inference described in section 3.2 are shown in Table 1. In
this case, there are two outputs, ’Treatment is Posiboost’
and ’Treatment is Placibin’, and the explanation
mechanism provides explanations for them. It is easy then
to produce a text explaining the inference.

5. Experimental Results and Conclusion
This section presents experimental results comparing the
performance of our inference mechanism with that
presented in (Gallant 1993) and (Ghalwash 1998). 
inference mechanism was applied to two neurule bases,
directly created from two datasets (described below). The
inference mechanisms in (Gallant 1993) and (Ghalwash
1998) were applied to two connectionist knowledge bases,
created from the same datasets by the technique described
in (Gallant 1993). Both connectionist knowledge bases are
multilevel networks. The comparison is made in terms of
the number of inputs asked by the system in order to draw
conclusions (as suggested in (Ghalwash 1998)) and 
number of the conditions/inputs visited for some kind of
computation in drawing the conclusions.

The first dataset is that used in Section 3.2 and taken
from (Gallant 1993). This dataset is incomplete. It consists
of 8 input data patterns out of 64 possible. We ran the
experiments with the 56 cases. The second dataset is taken
from the machine learning ftp repository (see Dataset in
the References) and involves a database for fitting contact
lenses. This dataset is complete and contains 24 input
patterns each consisting of four input and one output
attribute (variable) which takes three possible values.

Table2. Experimental results

KB PA NEURULES GALLANT GHALWASH
TS

ASK FIS ASK ;,’IS ASK vIS
KBI 56 202 586 231 986 207 882
KB2 24 79 602 101 443 80 886

Table 2 depicts the results. Initially, the values of all
variables were not known. KBland KB2 are the two
knowledge bases and PATS the training patterns. ASK and
VIS denote ’asked inputs’ and ’conditions visited’.

Table 2 shows that our inference engine performed quite
better than Gallant’s and slightly better than Ghalwash’s as
far as the number of asked inputs is concerned. Also, it did

much better, on the average, than both the other systems as
far as conditions visits are concerned. Although this is not
significant for small knowledge bases, it may become
important for very large ones.

On the other hand, due to the existence of intermediate
cells in the other systems, the number of explanation rules
produced by the explanation mechanisms in (Gallant 1993,
Ghalwash 1998), to justify the same conclusions, are more
than the ones produced by our explanation mechanism.
This fact, besides the computational cost, raises an issue of
comprehensibility as far as the user is concerned. The
more explanation rules are presented to the user, the more
confused he/she is.

So, experimental results show an improvement to the
performance of the inference engine compared to pure
connectionist approaches. Also, the explanation
mechanism seems to produce shorter explanations.
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