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Abstract

We present a novel approach to describe the knowledge dis-
covery process, focusing on a generalized form of attribute
called view. It is observed that the process of knowledge dis-
covery can, in fact. be modeled as the design, generation, use,
and evaluation of views, asserting that views are the funda-
mental building blocks in the discovery process. We realize
these concepts as an object oriented class library and conduct
computational knowledge discovery experiments on biolog-
ical data. namely the characterization of N-terminal protein
sorting signals, yielding significant results.

Introduction
Fayyad et al. (1996) describes the KDD process as "’the non-
trivial process of identifying valid, novel, potentially useful,
and ultimately understandable patterns in data", and gives
an outline of the basic KDD process consisting of: 1) data
selection 2) data preprocessing 3) data transformation 
data mining (hypothesis generation) 5) hypothesis interpre-
tation/evaluation 6) knowledge consolidation.

Considering that a large portion of the knowledge discov-
ery process almost always consists of a trial-and-error inter-
action between the domain expert and the problem (Cheese-
man & Stutz 1996), there is a strong need for facilitating the
human intervention (Langley 1998) to discovery systems,
such as: incorporating ingenious "tailor-made" attributes de-
signed by experts, integrating various expert knowledge as
well as experts’ intuitions concerning the domain, and as-
sisting in the evaluation of the knowledge which is obtained.
Also, another aspect which is recognized as a key in the
KDD process, is the generation or discovery of "good" at-
tributes/features (Motoda 1999) which help explain the data.

Much work has been done on these topics: For example,
CLEMENTINE (Khabaza & Shearer 1995) is a successful
Copyright (~) 2001. American Association for Artificial Intelligence (www.aaai.orgl.
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commercial tool, focusing on human intervention and exten-
sibility, integrating multiple modeling and discovery algo-
rithms with tools for data access, data manipulation and pre-
processing, visualization and reporting. Methods to extend
the space of available attributes and/or features, such as con-
structive induction,feature construction, have appeared fre-
quently in the machine learning literature (Michalski 1983;
Matheus & Rendell 1989; Bloedom & Michalski 1998).

Each has been successful in its own aim, but more gen-
eral concepts would help to better understand the process of
knowledge discovery as a whole. In this paper, we give a
more mathematical abstraction of the knowledge discovery
process by focusing on a generalization of attribute, named
view (Maruyama et ai. 1998; 1999), which defines a spe-
cific way of looking at, or understanding the given entities.
Views are essentially functional attributes which, given an
entity, returns a value representing a certain aspect of the
entity. Formal definitions for these concepts are given in the
next section.

We observe that steps of the KDD process can be de-
scribed as the design, generation, use, and evaluation of
views. We also define operations on views, as a way to
generate new views from existing views, inspiring the di-
versity of view design by experts. While the careful design
of views by experts offers an elegant interface for human in-
tervention to the discovery process, we also show that views
can describe a general framework, analogous to constructive
induction techniques, which can (at least partially) automate
the generation of new views.

From these properties, we conclude that views are funda-
mental building blocks of the knowledge discovery process.
We have realized the notions we have defined, as a software
library of views and view operators named HYPOTHESIS-
CREATOR(7-~C), hoping to accelerate this process. We give
an account of a series of computational experiments con-
ducted on biological data using 7~C, demonstrating how our
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ideas are applied to real world applications.

Basic Concepts
The initial idea of view was presented by Maruyama et
aL (1998; 1999), whose purpose was to facilitate human in-
tervention and attribute generation in the discovery process.
In this section, we further refine the definitions and give sev-
eral examples, trying to show how this simple, mathemati-
cally trivial idea fits into the discovery process.

Definition 1 (entity) An entity is anything which can be
identified as an individual (i.e. an object). We shall call
the set of entities which is under consideration, the entities
of interest E. []

For example, we consider proteins ep as entities, and the set
of plant proteins Ep as the entities of interest. Entities can
be distinguished from each other by definition, but how they
differ is ascertained through various attributes they possess.
An attribute, or feature, for an entity is generalized as fol-
lows:

Definition 2 (view, viewscope) vi ew is a f unction v :
E ---* R over entities. Let v(e) denote the value that a view
returns for a certain entity e. The range R of v is called the
range set of v. For convenience, we call a set of possibly
infinite views V = {vl, v2,...} a viewscope. Similarly, let
V(e) = {vt (e), v2(e),...}. 
A view returns a value which is expected to represent some
aspect of the given entity. When parametric functions are
regarded as views, we call them parametric views. A para-
metric view together with the space of parameters can define
a viewscope.

Example 1 An amino acid sequence view v would return
the amino acid sequence for a particular protein, e. g. if
ep C Ep is the ATPI7 protein of Saccharomyces cerevisiae
(Baker’s yeast), v(ep) "MIFKRAVSTL...".   []

The first step in the KDD process is data selection. Data
can be regarded as the set of entities, accompanied by ini-
tially given views. For example, if we are given a table of
items (rows) and their attributes (columns), the entity 
would consist of the items, and the initially given views
would be the mapping from each item to their attributes
in the table (one view for each column). If we can design
a Boolean valued view which returns true for entities we
want/need, and false for entities we do not want/need, we
can create a subset of the entities by filtering the original set
using this view.

Definition 3 (view operator)We call any function over
views (or viewscopes) and/or entities, which returns a view
(or viewscope), vi ew operator.   []

Definition 4 (view design) Views and view operators are
combined to create new views. We call the structure of such
combinations, the design of the view. []
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When human experts design views, they can embed their
knowledge, intuitions, and ideas. Views provides an inter-
face for human intervention to the discovery process.

There are view operators which are not dependent on the
views which they operate upon. These view operators may
be defined by a function over range sets.

Definition 5 (range set based view operator) range set
based view operator ~P is induced by a function ~h : t2 --~ R~

over a range set R. With ¢ and view v with range set R:

where ~[vI denotes the new view induced by the application
of operator ko to the range set of v. Similarly, for viewscope
V = {vl,vu,...}, we define ~[V] = {~[vl],~[v2] .... }.
Obviously, a parametric view operator will result in a para-
metric view. []

The next steps in the KDD process is the preprocessing,
and transformation of the data. It is not difficult to see that
preprocessing and transformation can be regarded as apply-
ing appropriate view operators to the initial views.

Example 2 View operators can be n-ary functions: e.g. for
two views vl, v2 returning a Boolean values, we can create
a conjunction view (representing the logical "and" of two
attributes) using a 2-ary operator ¢:

O[Vl,V2](e) =-- ¢(vl(e),v2(e)) = vl(e) A v2(e). 

[]

Example 3 (neighborhood operator) neighborhood op-
erator can be defined to generate views which are in the
neighborhood (according to some specified definition) of the
original viewscope: e.g. locally modifying the parameters
in a parametric view. This type of operator may be used, for
example, to conduct local optimization of views. []

The above examples closely resemble techniques appearing
in the context of constructive induction, or feature construc-
tion (Bloedorn & Michalski 1998).

In the data mining stage of the KDD process, rules or
hypotheses are generated by various learning algorithms.
These generated rules may also be regarded as views. For
example, a decision tree can be regarded as a function which
returns for each entity e, a corresponding value at the leaf of
where e ends up getting classified.

Definition 6 (learning based view operator) /earning
based view operator ~L can be induced from a learning
algorithm L, which uses the entity set and available views
to create a new view. []

Example 4 (hypothesis generation (supervised)) su-
pervised learning process can be written as an operation
on both the entity set and viewscope: 7-/[E, V, vc] = V’,
where 7-/ is a learning based view operator induced from
some kind of induction algorithm (for example, C4.5 for the



Table 1: Summary of representing the KDD process with
view(scopes).

Elements of the KDD Process Description in terms of view(scope)

I ) data selection

2) data preprocessing

3) data transformation

4) data mining

5) interpretation/evaluation
6) knowledge consolidation

classification and filtering of entities accord-
ing to a certain view, which decides whether
the entity is used or not.
Preprocessing of data can he expressed as a
function over data, so naturally may he de-
fined by a view(scope).
Transformation can also he expressed as a
function over data, so naturally may he de-
fined by a view(scope).
Data mining can he expressed as a genera-
tion of new view(scope). Hypothesis gener-
ation algorithms can he considered as view
operators.
interpretation/evaluation of a view(scope)
recursivety using newly generated
view(scopes)

case of decision trees), E is the entity set, V is the set of
views (or attributes/features) available to the algorithm, and
vc is the "answer" view. V’ is the set of generated views
(consisting of a single view, or perhaps multiple views:
e.g. the top scoring views). The resulting view(s) t EV’
is expected to satisfy the property v’(e) ~ vc(e) for most
eE E. []

Example 5 (hypothesis generation (unsupervised)) An
unsupervised learning process can be written as an operation
on both the entity set and viewscope: 7-/[E, V] = V’, this
time not requiring vc as in the supervised case.

For example, for entities E, viewscope V of numeri-
cal values, and clustering algorithm CL, ~CL will cre-
ate a viewscope representing the clustering of the entities:
7-fc£ [E, V] = C. Where C is a set of newly generated
views (again consisting of a single view, or perhaps mul-
tiple views). A view c E C’ would return a cluster identifier
c(e) (telling which cluster the entity is clustered to) for 
e E E, and we would expect the distances (defined some-
where in relation to values from V) between the entities in
the same cluster are small, and those in different clusters are
large. []

Since hypotheses are equivalent to views, the evalu-
ation/interpretation of a mined hypothesis is, in another
words, the evaluation/interpretation of the mined view,
meaning the manual evaluation of the view by a domain ex-
pert, or an automated evaluation according to some score
(e.g. accuracy).

Since we observed that hypothesis generation algorithms
generate views, the newly generated views may be used af-
terwards, perhaps in the next discovery task, or in refining
the current task. This represents the consolidation of the
knowledge gained from the data mining step.

The correspondence between views and the KDD process
is summarized in Table 1.

Because these elements are captured abstractly as views
and view operations, exploiting them can be done in a seam-
less, uniform manner. For example, since some view oper-
ators may operate on any view with a certain range set, we
see that we can reuse these operators. Some hypothesis gen-
eration operators also have this property, and can be used
for a variety of views. The same goes for preprocessing and
transformations algorithms on data, which can be used for
different entities (datasets).

The trial-and-error interaction between the domain expert
and the problem, as is done in (Cheeseman & Stutz 1996)
can be regarded as the trial-and-error of view design: the
expert searches for good views and good view design, test-
ing the views by applying them to the data, interpreting the
outcome, making local modifications, trying completely dif-
ferent views and view designs, After such extensive investi-
gations, the expert may, perhaps, finally understand the data
he/she is facing with, and consider a view generated in the
process as worthy knowledge.

These properties have lead us to develop an object ori-
ented software library named HYPOTHESISCREATOR(7-~C),
realizing a competent set of views and view operators, trying
to boost this interaction.

Characterization of N-Terminal Protein
Sorting Signals

To illustrate the concepts described in the previous sections,
we give a brief account of a successful knowledge discovery
endeavor which we actually experienced working with bio-
logical data. The following case is presented as an example
for our ideas, and a more detailed discussion of the experi-
ments and the results will be given in a biological journal.

Background Proteins are composed of amino acids, and
may be regarded as string sequences consisting of an alpha-
bet of 20 characters. Most proteins are synthesized in the cy-
tosol, and are carried to specific locations inside the cell. In
most cases, the information determining the sub-cellular lo-
calization site is represented as a short amino acid sequence
segment called a protein sorting signal (Nakai 2000). If 
can somehow detect the amino acid sequence encoding this
information, we would be able to predict the localization
sites. Since cellular functions are often localized in specific
compartments, this prediction of localization sites of vari-
ous proteins is an important and challenging problem in the
field of molecular biology, and would allow us to obtain in-
dications of the functions for unknown or unannotated pro-
teins. Further, if the rules for prediction were biologically
interpretable, this knowledge could help in designing artifi-
cial proteins with desired properties. We consider here the
typical N-terminal signals (signals that are known to appear
somewhere near the "beginning" of the protein), which are
mitochondrial targeting peptides (mTP), chloroplast transit
peptides (cTP), and signal peptides (SP).

Mitochondrial targeting peptides are known to be rich in
arginine (R), alanine (A), and serine (S), while negatively
charged amino acid residues (aspartic acid (D) and glu-
tamic acid (E)) are rare (von Heijne, Steppuhn, & Herrmann
1989). Only weak consensus sequences have been found.
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Table 2: View operators used in our experiments.

Operator

Il
Pp,A

/)h

A

"Ta,t,b

Be
Af

Type of Operator
string --. string
string ~ string
string --* heel

string ~ vector(float)

vector(float) --. float

double --* bool

boolx heel ~ heel
heel ~ heel

Description
Substring: return a specific substring [i, j] of a given string.
Alphabet Indexing: return an indexed string, using an alphabet indexing I.
Pattern Match: return true if pattern p matches the string using pattern matching algorithm
A, and false otherwise.
AAindex: a homomorphism of a mapping h: char--, float (h corresponds to an entry in the
AAindex Database).
Sum: returns the sum of the values of each element in the vector. (this value is referred to
as the indexing sum in the text)
Threshold: return b E {true, false} if the input value v is within a certain threshold. (s _<
v<t)
Boolean Operation: o E {and, or}.
Boolean Not Operation: Negation of the input.

Further, they are believed to form an amphiphilic c~-helix
important for import into the mitochondrion. Chloroplast
transit peptides are known to be rare in acidic residues, and
also believed to form an amphiphilic c~-helix (Bruce 2000).
It has been established that a concrete consensus sequence
does not occur in signal peptides. Rather, a three-region
structure is conserved: a positively charged n-region, a hy-
drophobic h-region, and a polar c-region (von Heijne 1990).

TargetP (Emanuelsson et al. 2000) is the best predictor so
far in the literature in terms of prediction accuracy, but since
it is a neural network based system, it is difficult to under-
stand the underlying rules for its prediction. PSORT (Nakai
& Kanehisa 1992) and MitoProt (Ciaros & Vincens 1996)
are systems which do utilize various expert knowledge about
sorting signals, but they are somewhat obsolete and their
prediction accuracy is unsatisfactory. The aim of our work
was to discover simple and understandable rules which still
had a practical prediction accuracy.

Approach The data we used was obtained from the
TargetP web-site (http://www.cbs.dtu.dk/services/TargetP/).
These data are divided into two data sets: plant and non-
plant sequences. We describe our analysis on the plant data
set of 940 sequences containing 368 mTP, 141 cTP, 269 SP,
and i 62 "Other" (consisting of 54 nuclear and 108 cytosolic
proteins) sequences.

We designed views from two standpoints. One aimed
to capture "’global" characteristics of the N-terminal se-
quences. Since existing knowledge about the signals
seemed to depend on biochemical properties of the
amino acids contained, we decided to use the AAindex
database (Kawashima & Kanehisa 2000), which is a compi-
lation of 434 amino acid indices, where each amino acid in-
dex is a mapping from one amino acid to a numerical value,
representing various physiochemical and biochemical prop-
erties of the amino acids.

The other view aimed to capture "local" characteristics:
although strong consensus patterns do not seem to be present
in the signals, there does seem to be a common structure to
each of the signals. Therefore an alphabet indexing + ap-
proximate pattern view was designed. An alphabet index-
ing (Shimozono 1999) can be considered as a discrete, un-
ordered version of amino acid indices, mapping amino acids

to a smaller alphabet (in our case, {1, 2, 3}). After trans-
forming the original amino acid sequence into a sequence of
the alphabet indices, a pattern is sought.

Starting with the proteins as entities E and an initial view
v which returns the amino acid sequence of each protein in
E, the two types of views (which return Boolean values) can
be defined as follows:

El =- ~i)p,A[~l[Si,j[1)]]] (3)
V2 -~- "Ts,t,b[.A[~h [Si,j [v]]]] (4)

See Table 2 for the definitions of the view operators. Note
that each operator (except ,4) is parametric, and the range 
the parameters defines the space of views to be searched.

The parameter space was designed as follows (taking into
account the existing knowledge about the sorting signals):
[i,j]: the 72 intervals [5n + 1, 5k] (where n = 0...8 and
k = 1... 8), t9: all patterns of length 3 -,, 10, A: approx-
imate matching (Wu & Manber 1992) with up to 1 ,,- 
mismatches, h: all entries of the AAindex database, b, s, t:
all possible combinations (appearing in the data). For the
alphabet indexing I, we first start with a random alphabet
indexing, and a local optimization strategy (Shimozono et
al. 1994) using a neighborhood operator was adopted.

After extensively searching for good views which dis-
criminate each of the signal types from sets of other signals,
we combined the discovered views into a decision list (See
Figure 1) whose nodes consist of conjunctions of views from
VI and Vr (except for distinguishing SP, where only 1 view
from V2 was used).

Results The obtained parameters are summarized in Ta-
ble 3. Concerning views of the form Vl, important features
concerning sorting signals were discovered. For SP, the hy-
dropathy index (Kyte & Doolittle 1982) was found to be the
most effective. This knowledge is not entirely new, but it
was surprising that such a simple rule could explain the sig-
nals so well - almost as good as TargetP. For mTP and cTP,
the isoelectric point index (Zimmerman, Eliezer, & Simha
1968) was found to be effective. Since this index can be
regarded as a more accurate version of the net amino acid
charge, we can see that although mTP and cTP lack in nega-
tively charged amino acids, mTP tend to be more positively
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Figure 1: The decision list for predicting localization sites.
The summary of parameters is given in Table 3.

Table 3: Summary of the Parameters used for the Final Hy-
potheses

Node Substring Amino acid index
Alphabet Mismatch

Indexing
Pattern

pllow~nce
P! [6, 25] Hydropathy Index not used not used not used

P2 [1, 30] Negative Charge All 112121221 2 ins/del

P3 [1, 15] Isoelectric Point AI2 211211221 3 ins/del

Name I Alphabet Indexing

, 121 3
AI,

[ AC STVWYAI2ACO FO.L.QS .WV IF

charged. The values of the views after applying the sum op-
erator .,4 is plotted in Figure 2.

For views of I,~, the alphabet indexing and pattern were
again found to capture existing knowledge about the pat-
terns. For example, the patterns capture a periodicity of
arginine (R) and/or lysine (K) which are characteristics 
the amphiphilic t~-helix structure of mTP and cTP.

Cross validation scores of the Matthews correlation coef-
ficient (MCC) (Matthews 1975),

tp x tn- fp x fn

x/(tp + f,+)(tp + fp)(tn + fp)(tn f, ,.)

are summarized in Table 4. We can see that our predictor
competes very well with TargetP.

Conclusion
We have presented an approach to describe the process of
knowledge discovery in terms of views, and have seen that
views are fundamental concepts in this process. The con-
cept of views allows us to model various (if not all) steps 
the knowledge discovery process, as well as provide an in-
terface for human intervention in the knowledge discovery
process. An example of a successful real world discovery
task, in which the concepts discussed were observed to play
an important role, was also presented.

The source code for the 7-/C library imple-
menting our ideas is available from its web-site
(http://www.HypothesisCreator.net/).

100

110

IO0

11111

I

o ¯

o mlll ¯

o .m ii,ii

|| il.

|In I

ON O I ~o o i lllll/l

! Ii Ill/ N J
, , , , , , .....

200 800 400 500 600 700 O00 - - 900
S~l~ ID

o o
o

o o o o "
Oomo o ooooo °oo~e a *o o gq~ o

" ~’o" °no° d~ -
@ x¯

o d) o ~. ¯

¯ ..,++or) :,"~="+’," ~ ,

.. 3 o °o-- :Ooo "+o
o

.0"I

oo
75 "mTP-pl~t" o o

PO I I I I I I I
0 100 200 300 400 500 600 700 800

Soquoec~ ID

I
gO0

Figure 2: Indexing sum values for the best substring,
amino acid index, and thresholds for distinguishing SP (top),
(mTP+cTP) vs Other (middle), and mTP vs cTP (bottom).
These represent a simple rule, for example for SP: calculate
the indexing sum, with respect to the hydropathy index, for
the 20 amino acids at position 6 through 25, and then check
the sum against the threshold. (Note that the x-axis only
represents the ID of the sequences, (in arbitrary order: SP,
mTP, cTP, nuc, cyt from left to right) and does not give any
information about the characteristics of the sequences)
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Table 4: The Prediction Accuracy (5-fold cross validation) of the Final Hypothesis (scores ofTargetP (Emanuelsson etal. 2000)
in parentheses)

Predicted category

True
#

category~qs
cTP mTP SP Other Sensitivity MCC

cTP 141 112 (120) 15(14) 0 (2) 14 (5) 0.79 (0.85) 0.64 (0.72)
mTP 368 41 (41) 304 (300) 9 (9) 14(18) 0.83 (0.82) 0.79 (0.77)
SP 269 16 (2) 8 (7) 237 (245) 8(15) 0.88 (0.91) 0.89 (0.90)
Other 162 13 (10) 6(13) 2 (2) 141 (137) 0.87 (0.85) 0.80 (0.77)
Specificity 0.62 (0.69) 0.91 (0.90) 0.96 (0.96) 0.80 (0.78)
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