From: FLAIRS-01 Proceedings. Copyright © 2001, AAAI (www.aaai.org). All rights reserved.

Tracking Clusters in Evolving Data Sets

Daniel Barbard

Ping Chen

George Mason University *
Information and Software Engineering Department
Fairfax, VA 22303
{dbarbara,pchen}@gmu.edu

Abstract

As organizations accumulate data over time, the
problem of tracking how patterns evolve becomes
important. In this paper, we present an algorithm
to track the evolution of cluster models in a stream
of data. Our algorithm is based on the applica-
tion of bounds derived using Chernoff’s inequality
and makes use of a clustering algorithm that was
previously developed by us, namely Fractal Clus-
tering, which uses self-similarity as the property to
group points together. Experiments show that our
tracking algorithm is efficient and effective in find-
ing changes on the patterns.

Introduction

Organizations today accumulate data at a astonish-
ing rate. This fact brings new challenges for data
mining. For instance, finding out when patterns
change in the data opens the possibility of mak-
ing better decisions and discovering new interesting
facts. The challenge is to design algorithms that
can track changes in an incremental way and with-
out making growing demands on memory.

In this paper we present a technique to track
changes in cluster models. Clustering is a widely
used technique that helps uncovering structures in
data that were previously not known. QOur technique
helps in discovering the points in the data stream in
which the cluster structure is changing drastically
from the current structure. Finding changes in clus-
ters as new data is collected can prove fruitful in
scenarios like the following;:

e Tracking the evolution of the spread of illnesses.
As new cases are reported, finding out how clus-
ters evolve can prove crucial in identifying sources
responsible for the spread of the illness.

o Tracking the evolution of workload in an e-
commerce server (clustering has already been suc-
cessfully used to characterize e-commerce work-
loads (Menascé et al. 1999)), which can help in

*This work has been supported by NSF grant IIS-
9732113
Copyright © 2001, American Association for Artificial
Intelligence (www.aaai.org). All rights reserved.

ynamically fine tune the server to obtain better
performance.

o Tracking meteorological data, such as tempera-
tures registered throughout a region, by observ-
ing how clusters of spatial-meteorological points
evolve in time.

Our technique is based on a novel clustering algo-
rithm that we call Fractal Clustering (citation erased
due to the anonymous reviewing process) which uses
the notion of self-similarity to cluster points. The
idea we exploit in this paper is to track the num-
ber of outliers that the next batch of points produce
with respect to the current clusters, and with the
help of analytical bounds decide if we are in the
presence of data that does not follow the patterns
(clusters) found so far. If that is the case, we pro-
ceed to re-cluster the points to find the new model.
The technique has the virtue of being incremental by
requiring only one pass over each data record, and
by basing its decisions on the record being processed
and on a fixed amount of information kept about
the current clustering models. (Hence, the memory
demands are kept bounded during the entire life of
the process.) It is important to remark that other
clustering algorithms previously published in the lit-
erature (e.g., K-means (Selim & Ismail 1984)) do not
share the properties of begin incremental and having
a concise representation of the clusters, and there-
fore are not suitable for the task we describe in this
paper.

The paper is organized as follows. In Section 2 we
provide the background of Fractal Clustering needed
to understand the tracking technique. In Section
3, we derive the analytical bounds and present our
tracking algorithm. In Section 4, we describe a sim-
ple, but representative experiment that illustrates
how our technique works. Finally, Section 5 con-
cludes the paper and delineates future avenues of
research.

Fractal Clustering

In this section we briefly describe our previously
published Fractal Clustering algorithm (Barbara &

KNOWLEDGE DISCOVERY 239

240

Chen 2000), which we will use as the basis for track-
ing clusters.

Nature is filled with examples of phenomena that
exhibit seemingly chaotic behavior, such as air tur-
bulence, forest fires and the like. However, under
this behavior it is almost always possible to find
self-similarity, i.e. an invariance with respect to
the scale used. The structures that exhibit self-
similarity over every scale are known as fractals
(Mandelbrot 1983). On the other hand, many data
sets that are not fractal, exhibit self-similarity over
a range of scales. It is important to remark that we
do not require that the data sets we want to cluster
are fractals, but rather that their clusters exhibit
self-similarity over a range of scales.

Fractals have been used in numerous disciplines
(for a good coverage of the topic of fractals and their
applications see (Schroeder 1991)). In the database
area, fractals have been successfully used to ana-
lyze R-trees (Faloutsos & Kamel 1997), Quadtrees
(Faloutsos & Gaede 1996), model distributions of
data (Faloutsos, Matias, & Silberschatz 1996) and
selectivity estimation (Belussi & Faloutsos 1995).

Self-similarity can be measured using the fractal
dimension. Loosely speaking, the fractal dimen-
sion measures the number of dimensions “filled”
by the object represented by the data set. In
truth, there exists an infinite family of fractal di-
mensions. By embedding the data set in an n-
dimensional grid which cells have sides of size r,
we can count the frequency with which data points
fall into the i-th cell, p;, and compute D,, the
generalized fractal dimension (Grassberger 1983;
Grassberger & Procaccia 1983), as shown in Equa-
tion 1.

dlog 3, pilog p;
— Blogr
D, = 1 alOESE'P?

g—1 8logr

forg =1
(1)

otherwise

Among the dimensions described by Equation 1,
the Hausdorff fractal dimension (¢ = 0), the In-
formation Dimension (limg _, 1 D,), and the Cor-

relation dimension (g = 2) are widely used. The
Information and Correlation dimensions are partic-
ularly useful for data mining, since the numerator
of D; is Shannon’s entropy, and D, measures the
probability that two points chosen at random will
be within a certain distance of each other. Changes
in the Information dimension mean changes in the
entropy and therefore point to changes in trends.
Equally, changes in the Correlation dimension mean
changes in the distribution of points in the data set.

The traditional way to compute fractal dimen-
sions is by means of the box-counting plot. For a
set of N points, each of D dimensions, one divides
the space in grid cells of size r (hypercubes of di-
mension D). If N(r) is the number of cells occupied

FLAIRS-2001

1.Given a batch S of points brought

to main memory:

2.For each point p € S:

3Fori = 1,---,k:

4. Let C] = CilU{p}
5. Compute Fy(C7)
6.Find 1 = min;(|Fa(C; — Fu(C;)|)
7.If le(Cé) - Fd(CZ)I > T

8.Label p as an outlier
9.else
10. Place p in cluster C’g

Figure 1: The incremental step for FC.

by points in the data set, the plot of N(r) versus r
in log-log scales is called the boz-counting plot. The
negative value of the slope of that plot corresponds
to the Hausdorff fractal dimension Dy. Similar pro-
cedures are followed to compute other dimensions,
as described in (Liebovitch & Toth 1989).

After we get the initial clusters, we can proceed
to cluster the rest of the data set. Each cluster
found by the initialization step is represented by a
set of boxes (cells in a grid). Each box in the set
records its population of points. Let k¥ be the num-
ber of clusters found in the initialization step, and
C = {C1,C,,...,Ci} where C; is the set of boxes
that represent cluster i. Let Fy4(C;) be the fractal
dimension of cluster i.

The incremental step brings a new set of points to
main memory and proceeds to take each point and
add it to each cluster, computing its new fractal
dimension. The pseudo-code of this step is shown
in Figure 1. Line 5 computes the fractal dimension
for each modified cluster (adding the point to it).
Line 6 finds the proper cluster to place the point
(the one for which the change in fractal dimension
is minimal). We call the value |Fy(C! — F4(C;)|
the Fractal Impact of the point being clustered over
cluster ¢. The quantity min;|Fy(C} — F4(C;)| is the
Minimum Fractal Impact (MFI) of the point. Line
7 is used to discriminate outliers. If the MFI of the
point is bigger than a threshold 7, then the point is
simply rejected as an outlier (Line 8). Otherwise,
it is included in that cluster. We choose to use the
Hausdorff dimension, Dy, for the fractal dimension
computation of Line 5 in the incremental step. We
chose Dy since it can be computed faster than the
other dimensions and it proves robust enough for
the task.

To compute the fractal dimension of the clusters
every time a new point is added to them, we keep
the cluster information using a series of grid repre-

sentations, or layers. In each layer, boxes (i.e., grids)
have a size that is smaller than in the previous layer.
The sizes of the boxes are computed in the follow-
ing way. For the first layer (largest boxes), we divide
the cardinality of each dimension in the data set by
2, for the next layer, we divide the cardinality of
each dimension by 4 and so on. Accordingly, we get
2D 92D ... 9oLD D._dimensional boxes in each layer,
where D is the dimensionality of the data set, and L
the maximum layer we will store. Then, the infor-
mation kept is not the actual location of points in
the boxes, but rather, the number of points in each
box. It is important to remark that the number
of boxes in layer L can grow considerably, specially
for high-dimensionality data sets. However, we need
only to save boxes for which there is any population
of points, i.e., empty boxes are not needed. The
number of populated boxes at that level is, in practi-
cal data sets, considerably smaller (that is precisely
why clusters are formed, in the first place). Let us
denote by B the number of populated boxes in level
L. Notice that, B is likely to remain very stable
throughout passes over the incremental step.

Tracking clusters

As we get a new batch of points to be clustered we
can ask ourselves if these points can be adequately
clustered using the models we have so far. The key
to answer this question is to count the number of
outliers in this batch of points. A point is deemed
an outlier in the test of Line 7, in Figure 1, when
the MFI of the point exceeds a threshold 7. We
can use the Chernoff bound (Chernoff 1952) and the
concept of adaptive sampling (Lipton et al. 1993;
Lipton & Naughton 1995; Domingo, Gavaldd, &
Watanabe 1998; 2000; Domingos & Hulten 2000),
to find the minimum number of points that must
be successfully clustered after the initialization algo-
rithm in order to guarantee with a high probability
that our clustering decisions are correct.

Let us define a random variable X;, whose value
is 1 if the i-th point to be clustered by FC has a
MFI which is less than 7, and 0 otherwise. Using
Chernoff’s inequality one can bound the expectation
of the sum of the X;’s, X = 3 ;' Xj, which is
another random variable whose expected value is np,
where p = Pr[X; = 1, and n is the number of
points clustered. The bound is shown in Equation
2, where € is a small constant.

Pr(X/n > (1+€)p] < exp(—pne?/3) (2)

Notice that we really do not know p, but rather
have an estimated value of it, namely p, given by the
number of times that X; is 1 divided by n. (L.e., the
number of times we can successfully cluster a point
divided by the total number of times we try.) In or-
der that the estimated value of p, p obeys Equation
3, which bounds the estimate close to the real value

with an arbitrarily large probability (controlled by
d), one needs to use a sample of n points, with n
satisfying the inequality shown in Equation 4.

Prilp—-pll] > 1-9 (3)

By using adaptive sampling, one can keep bring-
ing points to cluster until obtaining at least a num-
ber of successful events (points whose minimum frac-
tal impact is less than 7) equal to s. It can be
proven that in adaptive sampling (Watanabe 2000),
one needs to have s bound by the inequality shown
in Equation 5, in order for Equation 3 to hold. More-
over, with probability greater than 1—4/2, the sam-
ple size (number of points processed) n, would be
bound by the inequality of Equation 6. (Notice that
the bound of Equation 6 and that of Equation 4 are
very close; The difference is that the bound of Equa-
tion 6 is achieved without knowing p in advance.)

N 3(16:-:- E)ln(%) (5)
< FEein() Q

Therefore, after seeing s positive results, while
processing n points where n is bounded by Equa-
tion 6 one can be confident that the clusters will be
stable and the probability of successfully clustering
a point is the expected value of the random variable
X divided by n (the total number of points that we
attempted to cluster).

These bounds can be used to drive our tracking
algorithm T'racking, described in Figure 2. Essen-
tially, the algorithm takes n new points (where n is
given by the lower bound of Equation 6) and checks
how many of them can be successfully clustered by
FC, using the current set of clusters. (Recall that if
a point has a MFI bigger than 7, it is deemed an out-
lier.) If after attempting to cluster the n points, one
finds too many outliers (tested in Line 9, by com-
paring the successful count r, with the computed
bound s, given by Equation 5), then we call this a
turning point and proceed to redefine the clusters.
This is done by throwing away all the information of
the previous clusters and clustering the n points of
the current batch. Notice that after each iteration,
the value of p is re-estimated as the ratio of success-
fully clustered points divided by the total number of
points tried.

Experiments

We describe in this section the result of two experi-
ments using our tracking algorithm. We performed
the experiments in a Sun Ultra2 with 500 Mb. of
RAM, running Solaris 2.5.

KNOWLEDGE DISCOVERY 241

242

0. Initialize the count of successfully clustered
points, i.e.,r = 0
1.Given a batch S of n points, where n
is computed as the lower bound of Equation 6,
using the estimated p from the previous round
of points
2.For each point in S:
3. Use FC to cluster the point.
4. If the point is not an outlier
5. Increase the count of
successfully clustered points,
ie,r = r+1
6. Compute s as the lower bound of Equation 5
7. If r < s, flag this batch of points S
as a turning point and use S to find
the new clusters.
8. Else re-estimate p = r/n

Figure 2: Tracking: Algorithm to track clus-
ter changes.

In Figure 3, we show the data we used for the
first experiment, in a graphic form. (We show in
this figure the whole set of points, but not how they
were presented to the algorithm, which is explained
in what follows.) The data set is composed by three
kinds of points. The first kind, which appear at the
beginning of the data set, are points located in the
left bottom circle of Figure 3. The second kind of
points, located after all the points of the first kind,
correspond to points belonging to the middle circle
of Figure 3. Finally, the third kind of points, be-
longing to the upper right circle, are located at the
end of the data set. The data set is read in batches
of points. The initial clustering of points (of the
first kind) results in a single cluster, correspond-
ing to the left-bottom circle. While points of the
first kind are processed by the algorithm Tracking,
no change of clusters is found. When points of the
second kind start showing in the batch, the algo-
rithm reports 3759 outliers in a batch of 4414 (n)
points. Since r = 4414 — 3759 = 655 is much
smaller than s which has been computed at this
point to be 3774, a turning point is flagged and the
4414 points are clustered anew, resulting in a single
cluster corresponding to the middle circle. When
points of the upper-right circle are tested in with
the algorithm Tracking, the same phenomena oc-
curs. The experiment was conducted with the val-
ues § = 0.1, € = 0.05 and it took 0.3 seconds to
run.

The second experiment used data from the U.S.
Historical Climatology Network (CDIA), which
contains (among other types of data) data sets with

.FLAIRS-2001

Figure 3: Three-cluster data set used for
scalability experiments.

the average temperature per month, for several years
measured in many meteorological stations through-
out the United States. We chose the data for the
years 1990 to 1994 for the state of Virginia for
this experiment (the data comes from 19 stations
throughout the state). We organized the data as
follows. First we feed the algorithm with the data
of the month of January for all the years 1990-1994,
since (we were interested in finding how the average
temperature changes throughout the months of the
year, during those 5 years. Qur clustering algorithm
found initially a single cluster for points throughout
the region in the month of January. This cluster
contained 1,716 data points. Using § = 0.15, and
¢ = 0.1, and with the estimate of p = 0.9 (given
by the number of initial points that were successfully
clustered), we get a window n = 1055, and a value
of s, the minimum number of points that need to be
clustered successfully, of 855. (Which means that
if we find more than 1055-855 = 200 outliers, we
will declare the need to re-cluster.) We proceeded
to feed the data corresponding to the next month
(February for the years 1990-1994) in chunks of 1055
points, always finding less than 200 outliers per win-
dow. With the March data, we found a window with
more than 200 outliers and decided to re-cluster the
data points (using only that window of data). After
that, with the data corresponding to April, fed to

the algorithm in chunks of n points (p stays roughly
the same, so n and s remain stable at 1055 and 255,
respectively) we did not find any window with more
than 200 outliers. The next window that prompts
re-clustering comes within the May data (for which
we reclustered). After that, re-clustering became
necessary for windows in the months of July, Oc-
tober and December. The 7 used throughout the
algorithm was 0.001. The total running time was
1 second, and the total number of data points pro-
cessed was 20,000.

Conclusions

In this paper we have presented an algorithm to
track changes in cluster models for evolving data
sets. This problem becomes important as organi-
zations accumulate new data and are interested in
analyzing how the patterns in the data change over
time. Our algorithm was able to track perfectly
changes on the two datasets we experimented with.

Although the idea of using bounds (based on
Chernoff’s inequality) can be applied to other clus-
tering algorithms (as long as they exhibit incremen-
tal behavior), Fractal Clustering is specially well
suited for this, due to its incremental nature, the
concise way in which the current clusters informa-
tion is kept in main memory and the natural way in
which the algorithm deals with noise (by usage of a
simple threshold).

We plan to continue the evaluation of our algo-
rithm, with larger datasets (for instance, the com-
plete set of data found in (CDIA)) and other appli-
cations.

References

Barbari, D., and Chen, P. 2000. Using the Fractal
Dimension to Cluster Datasets. In Proceedings of
the Sizth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, Boston,
MA.

Belussi, A., and Faloutsos, C. 1995. Estimating
the Selectivity of Spatial Queries Using the ‘Corre-
lation’ Fractal Dimension. In Proceedings of the In-
ternational Conference on Very Large Data Bases,
299-310.

CDIA. U.S. Historical
Climatology Network Data. http://cdiac.esd.
ornl.gov/epubs/ndp019/ushcn_r3.html.

Chernoff, H. 1952. A Measure of Asymptotic Effi-
ciency for Tests of a Hypothesis Based on the Sum
of Observations. Annals of Mathematical Statistics
493-509.

Domingo, C.; Gavald4, R.; and Watanabe, O. 1998.
Practical Algorithms for Online Selection. In Pro-

ceedings of the first International Conference on
Discovery Science.

Domingo, C.; Gavaldi, R.; and Watanabe, O.
2000. Adaptive Sampling Algorithms for Scaling
Up Knowledge Discovery Algorithms. In Proceed-
ings of the second International Conference on Dis-
covery Science.

Domingos, P., and Hulten, G. 2000. Mining
High-Speed Data Streams. In Proceedings of the
Sizth ACM-SIGKDD International Conference on
Knowledge Discovery and Data Mining, Boston,
MA.

Faloutsos, C., and Gaede, V. 1996. Analysis of
the Z-ordering Method Using the hausdorff Frac-
tal Dimension. In Proceedings of the International
Conference on Very Large Data Bases, 40-50.

Faloutsos, C., and Kamel, I. 1997. Relaxing the
Uniformity and Independence Assumptions, Using
the Concept of Fractal Dimensions. Journal of
Computer and System Sciences 55(2):229-240.

Faloutsos, C.; Matias, Y.; and Silberschatz, A.
1996. Modeling Skewed Distributions Using Mul-
tifractals and the ‘80-20 law’. In Proceedings of
the International Conference on Very Large Data
Bases, 307-317.

Grassberger, P., and Procaccia, I. 1983. Charac-
terization of Strange Attractors. Physical Review
Letters 50(5):346-349.

Grassberger, P. 1983. Generalized Dimensions of
Strange Attractors. Physics Letters 97A:227-230.
Liebovitch, L., and Toth, T. 1989. A Fast Al-
gorithm to Determine Fractal Dimensions by Box
Countig. Physics Letters 141A(8).

Lipton, R., and Naughton, J. 1995. Query Size Es-
timation by Adaptive Sampling. Journal of Com-
puter Systems Science 18-25.

Lipton, R.; Naughton, J.; Schneider, D.; and Se-
shadri, S. 1993. Efficient Sampling Strategies for
Relational Database Operations. Theoretical Com-
puter Science 195-226.

Mandelbrot, B. 1983. The Fractal Geometry of
Nature. New York: W.H. Freeman.

Menascé, D.; Almeida, V.; Fonseca, R.; and
Mendes, M. 1999. A Methodology for Work-
load Characterizatoin for E-commerce Servers. In
Proceedings of the ACM Conference in Electronic
Commerce, Denver, CO.

Schroeder, M. 1991. Fractals, Chaos, Power Laws:
Minutes from an Infinite Paradise. New York:
W.H. Freeman.

Selim, S., and Ismail, M. 1984. K-Means-Type
Algorithms: A Generalized Convergence Theorem
and Characterization of Local Optimality. IEEE
Transactions on Pattern Analysis and Machine In-
telligence PAMI-6(1).

Watanabe, O. 2000. Simple Sampling Techniques
for Discovery Science. IEICE Transactions on In-
formation and Systems.

KNOWLEDGE DISCOVERY

243

