
An Empirical Comparison of Methods
for Iceberg-CUBE Construction

Leah Findlater and Howard J. Hamilton
Department of Computer Science

University of Regina, Regina, SK S4S 0A2, Canada
{ findl l,hamilton } @cs.uregina.ca

Abstract
The Iceberg-Cube problem is to identify the combina-

tions of values for a set of attributes for which a specified
aggregation function yields values over a specified aggre-
gate threshold. We implemented bottom-up and top-down
methods for this problem. The bottom-up method included
pruning. Results show that the top-down method, with or
without pruning, was slower than the bottom-up method be-
cause of less effective pruning.

1. Introduction

Users of decision support systems often see data in the
form of data cubes, which are views of the data in two or
more dimensions along some measure of interest [5,6].
Each cell in a cube represents the measure of interest for
one combination of values. If the measure issupport (tuple
count), each cell contains the number of tuples in which
that combination occurs. Given a database where each
transaction represents the sale era part from a supplier to a
customer, each cell ~,s,c) in the part-supplier-customer
cube represents the total number of sales of part p from
supplier s to customer c [5]. From k attributes, 2k different
combinations can be defined. For the part-supplier-
customer example, the eight possible combinations of at-
tributes are: part; customer; supplier; part-customer; part-
supplier; customer-supplier; part-customer-supplier; and
none (no attributes). In the context of database retrieval,
these combinations are calledgroup-bys.

Queries are performed on cubes to retrieve decision
support information. The goal is to retrieve data in the most
efficient way possible. Three means of achieving this goal
are to pre-compute all cells in the cube, to pre-eompute no
cells, and to pre-compute some cells. For attributes
A i Aa with cardinalities IA~I IA,,I, the size of the cube

is ~IAil. Thus, the size increases exponentially with the

number of attributes and linearly with the cardinalities of
those attributes. To avoid the memory requirements of pre-
computing the whole cube and the long query times ofpre-
computing none of the cube, most decision support systems
pre-compute some cells.

The Iceberg-Cube problem is to pre-compute only
those group-by partitions that satisfy an aggregate condi-
tion, such as a minimum support, average, min, max, or
sum [1]. A group-bypartition is an instance of a group-by

where each attribute is restricted to a specific value. For
the part-supplier group-by, one partition is <part-14, sup-
plier-29>; with the support measure, the aggregated total is
the number oftuples with these values. Queries on an "ice-
berg cube" retrieve a small fraction of the data in the cube,
i.e., the "tip of the iceberg" [2].

Two straightforward approaches to this problem are
top-down and bottom-up. The bottom-up approach starts
with the smallest, most aggregated group-bys and works up
to the largest, least aggregated group-bys. The top-down
approach starts with the largest, least aggregated group-

bys and works down to the smallest, most aggregated
group-bys. For example, the bottom-up approach begins
with the three separate part, supplier, and customer group-
bys, while the top-down approach begins with the single
part-supplier-customer group-by. Both approaches find the
same set ofgroup-bys.

In this paper, a comparison of the efficiency of bottom-
up and top-down methods is provided. Section 2 presents
the Iceberg-Cube problem and an example of it. Section 3
describes three approaches: bottom-up computation, top-
down computation, and top-down computation with prun-
ing. Section 4 presents results of testing the three algo-
rithms on a student records database, Section 5 concludes
the paper.

2. The Iceberg-Cube Problem

For a three-dimensional data cube and the support measure,
the iceberg-cube problem may be represented as [I]:

SELECT A,B,C,COUNT(*),SUM(X)
FROM R
CUBE BY A,B,C
HAVING COUNT(*) >= minsup,

where minsup represents the minimum support, i.e., the
minimum number of tuples a group-by must contain. The
result of such a computation can be used to answer any
queries on a combination of the attributes A,B,C that re-
quire COUNT(*) to be greater than minimum support.

Table I shows a relation with four attributes ABCD of
varying cardinalities. The eardinality of A is 5 because A
has 5 distinct values. The condition is that a combination
of attribute values must appear in at least three tuples (min-
sup is 3). The output from the algorithm is shown in Table
2. Copyright © 2001, AAAI. All rights reserved.

244 FLAIRS-2001

From: FLAIRS-01 Proceedings. Copyright © 2001, AAAI (www.aaai.org). All rights reserved.

A B C D
al b2 el dl
a2 bl cl d2
a2 b2 c2 d2
a3 b2 c2 dl
a3 b3 el dl
a4 b3 c3 d2
a5 b2 c2 dl

Table 1: Sample Relation

Combination Count
b2 4

b2-c2 3
el 3
c2 3
dl 4
d2 3

Table 2: Group-bys with Adequate Support

3. Approach
We consider three algorithms for computing Iceberg
Cubes. All methods yield identical output. The output is
the combinations of values for attributes that meet the
specified condition, as well as the aggregate value for each.
Figure I shows a 4-dimensional lattice that represents all
combinations of four attributes and the relationships
tween these combinations. We must determine for each
combination whether or not it has a value or values that
satisfy the minimum support requirement.

ABCD

all

Figure 1: The 4-Dimensional Lattice for ABCD [1]

3.1 Bottom-Up Computation
The Bottom-Up Computation (BUC) algorithm is given
Figure 2 [1,3]. This algorithm computes the cube begin-
ning with the smallest, most aggregated group-bys and
recursively works up to the largest, least aggregated group-
bys. The processing order can be seen in Figure 3, where
BUC begins processing at the leaves of the tree and recur-
sively works its way upward. Ifa group-by does not satisfy
the minimum support condition, then the algorithm does
not recurse to calculate the next largest group-by.

The BUC algorithm begins by taking the entire input
and aggregating it. No specific aggregate function is d~-
scribed in [I]. For our experiments, we performed an

Algorithm BUC(D, nextAttr, lastAttr, comb)
for d := nextAttr to lastAttr (* remaining attribs *)

T := Run "Select * from "D" order by" name[d]
(* attribute d of D is also attribute d ofT *)
iftuple count ofT is one or less then return end if
Count := partition(T, d) (* array of counts
k=l
for i := 1 to ICountI (* unique values ofattrib d *)

if Count[i] >= minsup then
Insert (comb "-" T[k,d], Count[i]) into Results
T’ := Run "Select from" T "where"

name[d] "=" T[k,d]
BUC(T’, d + 1, comb "-" T[k,d])

end if
k := k + Count[i]

end for
end for

Figure 2: BUC Algorithm

ORDER BY of the input on attribute d (line 2) and counted
tuples by linearly partitioning on attribute d (line 4) [3].

Suppose BUC is called with minsup of 40% (three tu-
pies), the relation in Table 1 as input, nextAttr of 1, lastAttr
of 4, and combination name When d is i, tuples are
ordered by attribute A and then Partition is called on a-
tribute A, producing a count for each unique value of A in
the entire table. No value of A has a count of at least rain-
sup, so the algorithm repeats with d as 2 (attribute B). After
Partition is called, the count for bl is less than minsup, so
the algorithm checks the count for b2, which is 4. The tuple
<b2,4> is inserted into the Results table. The algorithm
then recurses on only those tuples that contain b2. With
these three tuples, Partition is called on attribute C. The
count for ct is only 1, so the algorithm looks at ~. The
count for c2 is 3 so <b2-¢2,3> is inserted into the Results
table and the algorithm recurses on partition c2. This time
after Partition is called on D, no counts are greater than
minsup so the algorithm returns. This process continues
until the Results table contains all of the combinations and
counts seen in Table 2.

To improve the running time of this algorithm, the at-
tributes should be ordered from lowest to highest cardinal-
ity [1]. This ordering increases pruning on the first few
recursions and reduces the number ofrecursive calls.

ABCD

ABC ABD ACD BCD

AB AC AD BC BD CD

A B C D

all

Figure 3: BUC Processing Tree

KNOWLEDGE DISCOVERY 245

Algorithm TDC(D)
for ordering := Order.iterator(name)

OnePass(D, ordering, IorderingD
end for

Function OnePass(D, ordering, size)
T := Run "select "makeString(ordering) " from "

"order by "makeString(ordering)
forj := I tosize do Hold[j] :=T[I,j] end for
for i := ! to [TI (* for every tuple *)

Next[1] := T[i, i] (* first attribute of current tuple*)
for j := 1 to size (* for every attribute *)

ifj > 1 then Next[j] := Next[j - 1] "-" T[i ,j] end if
if Next[j] != Hold[j] then (* finished sequence *)

if Count[j] >= minsup then
Insert (Hold[j], Count[j]) into Results

end if
Count[j] := 0
Hold[j] := Next[j]

end if
Count[j] := Count[j] + 1

end for
end for

Figure 4: TDC Algorithm

ABC ABD ACD BCD

AB AC AD BC BD CD

A B C n

all

Figure 5: TDC Processin~ Tree

3.2 Top-Down Computation
The Top-Down Computation (TDC) algorithm is shown
Figure 4. This algorithm is based on an algorithm given in
[4]. It uses orderings, produced by the Order subalgorithm
to reduce the number of passes through the database. Order
is a relatively straightforward iterator implemented as a
recursive function [3]. With n attributes, Order produces
2nl orderings, and TDC calls OnePass on each. For exa m-
pie, for attributes A, B, C, and D, the 8 possible orderings
arc ABCD, ABD, ACD, AD, BCD, BD, CD and D. When
called with a specific ordering, OnePass counts not only
that combination but also any combination that is a prefix
of that ordering. For ordering ABCD, the combinations A,
AB, ABC and ABCD are also counted. These combina-
tions appear on the same path in the processing tree in Fig-
ure 5. Separate calls are made to OnePass for the other
seven orderings.

If Order is called on the attributes in Table 1, then the
first ordering passed to TDC is ABCD. OnePass performs
an ORDER BY on the database using the specified order-
ing. It then visits every tuple in the resulting table to de-
termine the count for all prefixes of ABCD.

For Table I, <al,b2,cl,dl> is copied into Hold and the
counts are incremented to 1. For the second pass Next[I] =
a2, so Count[l] is checked. It is less than minsup (where
minsup = 40% from the previous example), so the new
tuple <a2,bl,el,d2> is copied into Hold and the counts are
reset to 0. No value of A has count greater than or equal to
minsup so OnePass returns with no output. The same oc-
eurs for the next three orderings: ABD, ACD, and AD.

The fifth ordering is BCD. When TDC is called, an
ORDER BY is done on the attributes B, C, and D. The first
tuple, <bl,ct,d2>, is copied into Hold and all attribute
counts are incremented to 1. Since the second tuple con-
tains a different B value than the first, the current counts
are checked. All are less than minsup, so they are reset to 0
and <b2,cl,d2> is copied into tlold. On the next iteration
Next = <b2,c2,d i>, so Hold[1] is set to Next[1] and Count[1]
is incremented. Hold[2] is different than Next[2], so
Count[2] is checked. It is less than minsup, so e2 is copied
into Hold[2] and Count[2] is reset to 0. This process con-
tinues with no output until tuple six.

When tuple six is reached, Hold = <b2,c2,d2> and Next
= <b3,cl,dt>. At this point Count = [4, 3, 1], so <b2,4> and
<[b2,c2],3> are both inserted into the Results table because
they have counts greater than or equal to minsup. All
counts are reset to 0 and Next is copied into Hold as before.

This process continues until the current ordering is
completed and the orderings BD, CD and D are also com-
pleted. After this process, Results holds all attribute value
combinations that satisfy minimum support.

3.3 Top-Down Computation with Pruning (TDC-P)
The TDC-P algorithm adds pruning to TDC. An integer
array called fi’equent is used in OnePass-P in parallel with
count. This array is initialized to 0. When an itemset is
found to be above minsup,frequent[i] is set to 1, where i
corresponds to the last attribute in the itemset. At the end
of OnePass-P, frequent is analysed and the lowest index
that still holds a 0 found. The number of attributes minus
this index is returned to TDC-P. TDC-P passes this num-
ber to the Order-P iterator, which immediately returns from
recursive calls this many times (levels) and then continues
execution. The algorithm is given in [3].

For example, for Table 1 and a minsup of 3, on the first
ordering (ABCD) no value of attribute A satisfies minsup.
OnePass-P returns the number of attributes (4) minus the
index for attribute A (1), which is 3. When Order-P is next
called, it skips three levels (anything starting with ABC,
AB, or A). This skips three orderings (ABD, ACD and
AD). All combinations counted by these orderings include
A, yet we already know that no value of A is greater than
minsup, so we can safely eliminate these orderings. Then
Order-P continues by creating the next itemset, BCD.

246 FLAIRS-2001

¯ ..~..TDC High to Low

_ .--~--TDC Low to High
.,’,’--" ..:.... ~’.~-4* TDC-P LOW tO High ~:~.(

"41- TDG-P Hk~ tO LOW

~.. j-

0 10000 20000 30000 40000 50000 60000

Size of Input

Figure 6: Pruning Effectiveness of TDC-P with
Four Input Attributes

TDC-P calls OnePass-P on this itemset and execution con-
tinues. The final output is the same as for the BUC and
TDC algorithms.

4. Results
The data we used to test these algorithms is grading data
from the University of Regina’s student record system. The
original table has 59689 records and 21 attributes, most of
which have cardinalities below 150. We ran tests on the
original table and subsets of 45000, 30000, 20000, 10000,
5000, and 2000 records. Input for each test run included
one of these tables and three or more attribute names to
calculate the attribute value combinations from. We call
these attribute names the input attributes for a test run.

The algorithms were implemented using Microsoft Ac-
cess and Visual Basic. Testing was done on a Pentium Iii
600 MHz PC with 256MB of RAM. We measured elapsed
time on a dedicated machine. Time for input and output
was included. The values we report for elapsed time repre-
sent averages for 10 runs on identical data. In previous
testing of BUC, the actualization of output was not imple-
mented [1].

Test Series I: Pruning Effectiveness of TDC-P
First, we measured the effectiveness of the pruning in
TDC-P. For all data sets, TDC-P ran at least as fast as
TDC, and it was faster for most data sets. A representative
example, using 4 input attributes, is shown in Figure 6.
TDC-P’s pruning gives it faster execution times than TDC
for both runs.

The execution time for the TDC-P algorithm depends
on the ordering of the input attributes, as does the BUC
algorithm [i]. This ordering is based on the cardinality of
the attributes. As can be seen in the top two lines in Figure
6, the ordering does not significantly affect the execution
time of the TDC algorithm because no pruning occurs. For
four input attributes, n is 4, and the TDC algorithm makes
2"-I = 8 passes over the data for both orderings. TDC visits
every tuple the same number of times regardless of the
order of the attributes.

TDC-P executed faster with attributes ordered from
high to low cardinality than with them ordered from low to
high cardinality. High to low cardinality permits pruning at

300 ’ 1

200’

150.

100’

50"

o I
3 4 5 6 7

Number of Input Attributes

Figure 7: Varying Number of Attributes

600] ... 1

~4oo !

 ,oo/
0 100O0 20000 300OO 4000O 5O000 6O000

Size of Input

Figure 8: Seven Input Attributes

an earlier stage. In the tests used for Figure 6, TDC-P made
7 passes over the data when the ordering was from low to
high, but only 5 when it was high to low.

Test Series 2: Varying Number of Attributes
We tested the three algorithms with varying numbers of
attributes. Figure 7 shows that BUC’s computation time
increases more slowly than TDC-P’s as the number of h-
put attributes increases from 3 to 7. All three algorithms
have similar running times for three attributes. However,
for 7 attributes, the execution time of TDC-P is signifi-
cantly longer than that of BUC for seven attributes, as
shown in Figure 8.

Test Series 3: Varying Cardinality of Attributes
We investigated the effect of varying the cardinality of the
attributes on the performance of the three algorithms. For
these experiments, we defined an attribute as having high
cardinality if it had at least 150 distinct values and low
cardinality otherwise. Since the person-identifier (PIDM)
attribute had a cardinality of about 20000 for the full rela-
tion, it offered the best opportunity for early pruning. This
experiment allowed us to compare the pruning capability
of the algorithms. We tried all low cardinalities (Low), all
high cardinalities (High), and a mix of low and high cardi-
nalities (Mixed).

Figure 9 shows the execution times with three low-
cardinality input attributes. The similar running times of
TDC and TDC-P indicate that little pruning occurred in
TDC-P. Since BUC also had similar running times, it must
not have pruned much either. In Figure I0, with PIDM and

KNOWLEDGE DISCOVERY247

0 10000 20000 30000 40000

Size of Input

Figure 9: Three Attributes - Low Cardinalities

5OOOO 60OOO

0 10000 20000 300O0 40000 5000O 6000

Size of Input

Figure 10: Three Attributes - High Cardinalities

two other higher cardinality attributes, BUC and TDC-P
ran faster than TDC, with BUC pruning most effectively.

Figures 11 and 12 show the results of similar tests run
with six attributes instead of three. BUC is faster than
TDC-P and TDC, on both low and mixed cardinality a-
tributes.

5. Conclusion
We described three algorithms for the Iceberg-Cube prob-
lem, which is to identify combinations of attribute values
that meet an aggregate threshold requirement. The results
of our testing show that the BUC algorithm is faster than
the TDC and TDC-P algorithms and produces the same
output. TDC-P was more effective than TDC, but could
only compete with BUC when there were very few attrib-
utes as input.

The BUC algorithm ran faster than the TDC-P algo-
rithm because it begins with the smallest group-bys possi-
ble. These small group-bys are significantly faster to com-
pute than the large group-bys (with which TDC-P starts).
Although BUC and TDC-P both employ pruning, TDC-P
performs a considerable amount of computation on the
large group-bys before pruning becomes effective.

This weakness of the TDC-P algorithm in comparison
to the BUC algorithm becomes more apparent as the num-
ber of attributes increases, because it takes an increasingly
long time for TDC-P to process the first few group-bys.
The conclusion is that BUC prunes earlier and more effec-
tively than TDC-P. BUC is the algorithm of choice for this
problem.

250

~200 " "

150

i~100

-1

. , . . i
Size of Input

Figure 11 : Six Attributes - Low Cardinalities

250

200

150

1aa

5O

0
0

,.,,,..t1~=-.~--~.-’~’’’~ . ..
~-" . . . i

1OOO0 20000 30000 40000 50000 60000

Size of Input

Figure 12: Six Attributes - High and Low Cardinalities

Acknowledgements: We thank Steve Greve for code,
and the Natural Science and Engineering Research Council
of Canada for an URSA award (LF), a Research grant
(HH), and Networks of Centres of Excellence funding pro-
vided in cooperation with PRECARN via IRIS (HH).

References
[1] K. Beyer and R. Ramakrishnan. Bottom-Up Computa-
tion of Sparse and Iceberg CUBEs. SIGMOD Record,
28(2):359-370, 1999.
[2] M. Fang, N. Shivakumar, H. Garcia-Molina, R. Mot-
wani, and J. D. Ullman. Computing Iceberg Queries Effi-
ciently. In Proc. of the 24th VLDB Conference, pages 299-
310, New York, August 1998.

[3] L. Findlater and H. J. Hamilton. An Empirical Com-
parison of Methods for Iceberg-CUBE Construction.
Technical Report CS-2000-04, University of Regina. Re-
gina, Canada.
[4] S. Greve. Experiments with Bottom-up Computation of
Sparse and Iceberg Cubes. CS83 ! Course Project, De-
partment of Computer Science, University of Regina. Re-
gina, Canada, May, 2000.

[5] V. Harinarayan, A. Rajaraman and J. Ullman. Imple-
menting Data Cubes Efficiently. SIGMOD Record,
25(2):205-216, 1996.
[6] S. Sarawagi, R. Agrawal, and A. Gupta. On Computing
the Data Cube. Technical Report RJ 10026, IBM Almaden
Research Center, San Jose, CA, 1996.

248 FLAIRS-2001

