
Approximate Association Rule Mining

Jyothsna R. Nayak and Diane J. Cook
Department of Computer Science and Engineering

Arlington, TX 76019
cook@cse.uta.edu

Abstract
Association rule algorithms typically only identify patterns
that occur in the original form throughout the database. In
databases which contain many small variations in the data,
potentially important discoveries may be ignored as a result.
In this paper, we describe an associate rule mining algorithm
that searches for approximate association rules. Our ~AR
approach allows data that approximately matches the pattern
to contribute toward the overall support of the pattern. This
approach is also useful in processing missing data, which
probabilistically contributes to the support of possibly
matching patterns. Results of the ~AR algorithm are
demonstrated using the Weka system and sample databases.

Introduction
A number of data mining algorithms have been recently
developed that greatly facilitate the processing and
interpreting of large stores of data. One example is the
association rule mining algorithm, which discovers
correlations between items in transactional databases.

The Alm’iori algorithm is an example association rule
mining algorithm. Using this algorithm, candidate patterns
which receive sufficient support (occur sufficiently often)
from the database are considered for transformation into a
rule. This type of algorithm works well for complete data
with discrete values.

One limitation of many association rule mining
algorithms, such as the APriori algorithm [Agrawal 1990], is
that only database entries which exactly match the candidate
patterns may contribute to the support of the candidate
pattern. This creates a problem for databases containing
many small variations between otherwise similar patterns,
and for databases containing missing values.

Missing and noisy data is prevalent in data gathered today,
particularly in business databases. For example, U.S. census
data reportedly contains up to 20% erroneous data.
Important features may also be frequently missing from
databases if collection was not designed with mining in
mind.

The goal of this research is to develop an association rule
algorithm that accepts partial support from data. By
generating these "approximate" rules, data can contribute to
the discovery despite the presence of noisy or missing values.

t Copyright © 2001, American Association for Artificial Intelligence

(www.aaai.org). All rights reserved.

The approximate association rule algorithm, called ~AR, is
built upon the Apriori algorithm and uses two main steps to
handle missing and noisy data. First, missing values are
replaced with a probability distribution over possible values
represented by existing data. Second, all data contributes
probabilistically to candidate patmms. Pattexns which
receive a sufficient amount of full or partial support are kept
and expanded.

To demonstrate the capabilities of ~AR, we incorporate
the algorithm into the Weka implementation of Apriori.
Results arc shown on several sample databases.

Association Rule Mining
A number of data mining algorithms have been introduced to
the community that perform summarization of the data,
classification of data with respect to a target attribute,
deviation detection, and other forms of data characterization
and interpretation. One popular summarization and pattern
extraction algorithm is the association rule algorithm, which
identifies correlations between items in transactional
databases.

Given a set of transactions, each described by an
unordered set of items, an association rule X Y may be
discoverod in the data~ wh~:e X and Y are conjunctions of
items. The intuitive meaning of such a rule is that
transactions in the database which contain the items in X,
tend to also contain the items in Y. An example of such a
rule might be that many observed customers who purchase
tires and auto accessories also buy some automotive services.
In this case, X = {tires, auto accessories} and Y =
{ automotive services }.

Two numbers are associated with each rule, that indicate
the support and confidence of the rule. The support of the
rule X Y represents the percentage of transactions from
the original database that contain both X and Y. The
confidence of rule X Y repres~mts the pel’c~tage of
transactions containing items in X that also contain items in
Y. Applications of association rule mining include cross
marketing, attached mailing, catalog design and customer
segmentation.

An association rule discovery algorithm searches the space
of all possible patterns for rules that meet the user-specified
support and confidence thresholds. One example of an
association rule algorithm is the Apriori algorithm designed
by Srikant and Agrawal [Srikant and Agra~al 1997]. The

KNOWLEDGE DISCOVERY269

From: FLAIRS-01 Proceedings. Copyright © 2001, AAAI (www.aaai.org). All rights reserved.

problem of discovering association rules can be divided into
two steps:

I. Find all itemsets (sets of items appearing together in
a transaction) whose support is greater than the
specified threshold. Itemsets with minimum support
are called frequent itemsets.

2. Generate association rules from the frequent
itemsets. To do this, consider all partitionings of the
itemset into rule lea-hand and fight-hand sides.
Confidence of a candidate rule X Y is calculated
as support(XY) / support(X). All rules that meet
confidence threshold are reported as discoveries of
the algorithm.

Ll: = {frequent l-itemsets};
k:= 2; //k represents the pass number
While (Lkq ~: O)

Ck = New candidates of size k
generated from kk-i

For all transactions t ~ D
Increment count of all candidates in Ck

that are contained in t
Lk = All candidates in Ck with

minimum support
k = k+l

Report Ok Lk as the discovered frequent itemsets

k-itemset An itemset containingk items

k Set of frequent k-itemsets
(k-itemsets with minimum support)

Ck Set of candidate k-itemsets
(potentially frequent itemsets)

Ilk Lk Set of generated itemsets

Figure i. The Apriod algorithm.

Figure ! summarizes the Apriori algorithm. The first pass
of the algorithm calculates single item frequencies to
determine the frequent l-itemsets. Each subsequent pass k
discovers frequent itemsets of size k. To do this, the frequent
itemsets Lk-t found in the previous iteration are joined to
generate the candidate itemsets Ck. Next, the support for
candidates in Ck is calculated through one sweep of the
transaction list.

From Lk-l, the set of all frequent (k-I) itemsets, the set
candidate k-itemsets is created. The intuition behind this
Apriori candidate generation procedure is that if an itemset X
has minimum support, so do all the subsets of X. Thus new
itemsets are created from (k-l) itemscts p and q by listing
p.iteml, p.item2 p.item(k-1), q.item(k-1). Items p and
are selected if items 1 through k-2 (ordered
lexicographically) are equivalent for p and q, and item I~1 i~

not equivalent. Once candidates are generated, itemsets are
removed from consideration if any (k-l) subset of the
candidate is not in Lk.m.

Mining in the Presence of Missing Data
Mining in the presence of missing data is a common

challenge. A variety of approaches exist to deal with missing
data. By far the most common response is to omit eases with
missing values. Because deleting data with missing values
may waste valuable data points, missing values are often
filled. Missing values may be replaced with a special symbol
that the mining algorithm ignores. The missing value may
also be induced using standard learning techniques, though
these approaches yield the most successful results when only
one attribute is missing [Lakshmiuarayanan 1996, Quinlan
1993, Ragel 1998]. Breiman uses a surrogate split to decide
the missing value [Breiman 1983]. The surrogate value is the
one with the highest correlation to the original value.

The most common approach is to impute missing values
by globally replacing them with a single value such as the
feature average before initiating the mining algorithm. The
Weka system, on which we implement our ~AR algorithm,
substitutes the mode of a nominal attribute for missing values
throughout the dam_base.

The -AIR Algorithm

our approach to approximate association rule mining is
embodied in the ~AR algorithm. The ~AR algorithm
represents an enhancement of the Apriori algorithm included
as part of the Weka suite of data mining tools [Weka]. The
Weka algorithms, including the basic Apriori algorithm, are
written in Java and include a uniform interface.

The first step of the ~AR algorithm is to impute missing
values. Each missing value is replaced by a probability
distribution. In order to adopt this approach, we make the
assumption that fields are named or ordered consistently
between data entries. This probability distribution represents
the likelihood of possible values for the missing data.
calculated using frequency counts from the entries that do
contain data for the corresponding field.

For example, consider a database that contains the
following transactions, where "?." represents a missing value.

¯ A, B, C
¯ E,F,E
¯ ?, B, E
¯ A,B,F

The missing value is replaced by a probability distribution
calculated using the existing data. In this case, the
probability that the value is "A" is P(A) = 0.67, and the
probability that the value is "E" is P(E) = 0.33.

The second step of the ~AR algorithm is to discover the
association rules. The main difference between ~AR and the
Apriori algorithm is in the calculation of support for a
candidate itemset. In the Apriori algorithm, a transaction

260 FLAIRS-2001

supports a pattern if the transaction includes precise matches
for all of the items in the candidate itemset.

In contrast, ~AR allows transactions to partially support a
candidate pattern. Given f fields or items in the candidate
itemset, each item in the database entry may contribute
toward a total of I/f of the total support for the candidate
itemset. If the database entry completely matches the
corresponding item, support is incremented by I/f. Thus if
there is a complete match between the transaction and the
candidate itemset, the support will be incremented by f * I/.f
= 1, in a manner similar to the Apriori algorithm.

Two types of inexact match may occur. In the first case,
the transaction entry exists but does not match the
corresponding entry in the candidate itemset. In this case,
the support is incremented according to the similarity of the
two values. In this case of nominal attributes, the difference
is maximal and support is not incremented. In the case of
numeric values, the support is incremented by the absolute
value of the difference between the value, divided by the
maximum po~ible value for the given item.

Consider a candidate itemset containing four items:
¯ C=A,B,C,D

A database transaction may exist that fully matches the
candidate itemsct:

¯ Tn = A, B,C, D
In this example, support for candidate C is incremented by ¼
+¼ +¼+%=1
Using the second example, the transaction does not
completely match the candidate itemset:

¯ T2 =A,E,C,D
Support for candidate C is incremented based on
transaction Tz by ¼ + 0 + ¼ + ¼ = %.

The second type of inexact match considers a missing
value which has been replaced by a probability
distribution, and is considered for possible support of a
candidate itemset. The support for the pattern is then
incremented by I/f ¯ the probability that the missing value
corresponds to the value in the candidate itemset For
example, if the transaction is:

¯ T3 = A, B, ?, D and P(C -- ~ P(E = ¼),
P(F = I/2)

Support for candidate itemset C is incremented by ¼ + +
CA* ’3+ ’/4 = 7/8.

One danger with this approach is that every transaction
can potentially support every candidate itemset. To
prevent transactions from supporting patterns that differ
greatly from the transaction, a minimum match threshold is
set by the user. If the support provided by any transaction
falls below the threshold, then the transaction does not
contribute any support to the candidate pattern.

The pseudocode for the FindSupport function is shown
in Figure 2. This function determines the amount of
support that exists in the database for a specific candidate
itemset.

FindSupport(C, D)
support = 0
for each transaction T ~ D

f = number of items in T
fori= 1 tof

ifT[i] ="?"
support = support + (I/f* P(D[i] = C[i]))

else ifD[i] ~: C[i]
support = support + (1/f* (IC[i] - D[i][))

else support = support + l/f
if support > MatehThreshold

return support
else return 0

Figure 2. FindSupport function.

In the Weka implementation of the ~AR algorithm, a
minimum support threshold of 100% is initially specified.
Multiple iterations of the discovery algorithm are exeeuted
until at least N itemsets are discovered with the user-
specified minimum confidence, or until the user-specified
minimum support level is reached.

The ~AR algorithm is composed of 3 steps, First, all of
the transactions are read from a database stored in the
ARFF format. Second, itemsets are generated that meet
the support and confidence thresholds. Finally, all
possible rules are generated from the large itemsets.

1,5,?,?,?,40,?,?,2,?,ll,’average’,?,?,
’yes’,?,’good’

2,4.5,5.8,?,?,35,’ret_allw’,?,?,,yes’,
ll,’below_average’,?,’full’,?,
’full’,’good’

?,?,?,?,?,38,’empl_contr’,?,5,?,ll,
’generous’ ’yes’ ’half’ ’yes’# 0 , #

’half’,’good’3,3.7,4,5,’tc’,?,?,9.,9,’yes,,9,9 9,9’

’yes’,?,’good’
3,4.5,4.5,5,?,40,?,?,?,?,12,’average’,

?,’half’,’yes’,’half’,’good’
2,2,2.5,?,?,35,?,?,6,’yes’,12,

’average’,?,?,?,?,’good’
3,4,5,5,’tc’,?,’empl_contr’,?,?,?,12,

’generous’,’yes’,’none’,’yes’,
’half’,’good’

3,6.9,4.8,2.3,?,40,?,?,3,?,12,
’below_average’,?,?,?,?,’good,

2,3,7,?,?,38,?,12,25,’yes’,ll,
’below_average’,’yes’,’half’,,yes,,
?,’good’

1,5.7,?,?,’none’,40,’empl_contr’,?,4,?,
ll,’generous’,’yes’,’full’,?,?,
’good’

3,3.5,4,4.6,’none’,36,?,?,3,?,13,
’generous’,?,?,’yes’,’full’,’good’

2,6.4,6.4,?,?,38,?,?,4,?,15,?,?,’fuli’,
?,?,’good’

2,3.5,4,?,’none’,40,?,?,2,’no’,lO,
’below_average’ ’no’ ’half,,9, , ¯ ,

’half’,’bad’

Figure 3. Portion of the labor database.

KNOWLEDGE DISCOVERY 261

We demonstrate the ability of ~AR to discover
approximate association rules in the presence of noisy and
incomplete data. Specifically, we test the ~AR algorithm
on a labor transactional database The database is
provided in the ARFF form as shown in Figure 3, in which
each field describes a property of labor. This database
describes final settlements in labor negotiations in
Canadian industry. The database contains a large amount
of missing data.

The Weka system generates association rules after
imputing missing values in a preprocessing step. Missing
values are generated using the method described earlier.

We expect the number of rules generated using ~AR to
increase over the Weka original implementation, because
transactions that do not exactly match the candidate
itemset can still contribute to the support of the pattern.

Figure 4 shows a sample of the generated rules using the
original Apriori algorithm, and Figure 5 shows a sample of
the generated rules used the ~AR algorithm. The support
threshold is 0.4, and the confidence threshold is 0.9. The
number preceding the "----=>" symbol indicates the rule’s
support. Following the rule is the number of those items
for which the rule’s consequent holds as well. In
parentheses is the confidence of the rule. The Weka

Best rules found:

1. duration=’(2.8-inO’ vacation=generous 3 --> bereavement-assistance=yes class=good 3 (1)
2. duration=’(2.8-in0’ bereavement-assistance=yes 3 ~>vacation=generous class=good 3 (I)
3. vacation=generous bereavement-assistance=yes 3 --> duration=’(2.8-inf)’ class=good 3 (1)
4. duration=’(2.8-inf)’ vacation=generous bereavement-assistance=yes 3 --> class=good 3 (1)
5. duration=’(2.8-inr’)’ vacation=generous class=good 3 --> bereavement-assistance=yes 3 (1)
6. duration=’(2.8-int)’ bereavement-assistance--yes class=good 3 --> vacation=generous 3 (1)
7. wage-increas~second-year=’(3.85-4.3]’ class=good 3 --> bereavement-assistance=yes 3 (1)
8. wage-inereaso-first-year=’(3.47-3.96]’ 3 --> wage-increase-second-year=’(3.85-4.3]’ shift- differential=’(-inf-4.3]’
(1)
9. wage-increase-first-year=’(3.47-3.96]’ wage-inereaso-second-year=’(3.85-4.3]’ 3 --> shift-differential=’(-inf-4.3]’
(1)
10. wage-increase-first-year=’(3A7-3.96]’ sbift-differential=’(-inf-4.3]’ 3 --> wage-increaso-second-year=’(3.85-4.3]’ 3
(I)
I 1. wage-increase-second-year=’(3.85-4.3]’ shitt-differential=’(-inf-4.3]’ 3 --> wage-increaso-first-year=’(3.47-3.96]’
(1)
12. duration=’(2.8-inO’ shift-differential=’(-inf-4.3]’ 3 --> class=good 3 (1)

Figure 4. Labor database rules discovered using the Apriori algorithm.

Best rules found:
1. wage-increase-first-year=’(3.47-3.96]’ shilt-differential=’(-inf-4.3]’ 4 --> wage-increase-second- year=’(3.85-4.3]’ 4
(1)
2. wage-increaso-first-year=’O.47-3.96]’ 3 --> shift-differential=’(-inf-4.3]’ 3 (1)
3. duration=’(2.8-in0’ vacation=generous bereavement-assistance=yes 3 --> class=good 3 (1)
4. wage-increase-second-year=’(3.85-4.3]’ shift-differential=’(-inf-4.3]’ 4 --> wage-increase-first-year=’(3.47-3.96]’
(1)
5. duration=’(2.8-int)’ vacation=generous 3 --> bereavement-assistance=yes 3 (I)
6. vacation=generous bereavement-assistance=yes 3 --> duration=’(2.8-inf)’ 3 (1)
7. wage-increase-first-year=’(3.47-3.96]’4 --> wage-increase-second-year=’(3.85-4.3]’ shift -differential=’(-inf-4.3]’
(!)
8. duration=’(2.8-int)’ bereavement-assistance=yes 3 --> vacation=generous 3 (I)
9. duration=’(2.8-inf)’ shift-differential=’(-inf-4.3]’vacation=generous 5 --> class=good 5
10. bereavement-assistance=yes class=good 5 --> wage-increase-second-year=’(3.85-4.3]’ 5 (1
I 1. statutory-holidays=’(l 1.4-12]’ 4 --> class=good 4 (1)
12. working-hours=’(39.5-int)’ 4 --> shift-differential=’(-inf-4.3]’ 4 (I)

Figure 5. Labor database rules discovered using the ~AR algorithm.

262 FLAIRS-2001

implementation of the Apriori algorithm orders rules
according to their confidence and uses support as a
tiebreaker. Preceding the rules are the numbers of itemsets
found for each support size considered.

The original Apriori database discovered 24 itemsets of
size I, 35 itemsets of size 2, 13 itemsets of size ~ and 1
itemset of size 4. Using ~AR and the probability
distribution substitution for missing values, 24 itemsets
were discovered of size 1, 35 itemsets were discovered of
size 2, 24 itemsets were discovered of size 3, and 6
itemsets were discovered of size 4. These discovers
represents an increase in the discovered itemsets and
corresponding rules over the original Apriori algorithm.

The main reason for this difference is the increased
support provided by transactions with missing values to a
number of candidate itemsets that possibly match the
transaction. We tested the results of the ~AR algorithm
with increasing numbers of missing values (due to
artificially replacing known values with a missing value
symbol). As expected, the number of rules generated by
~AR decreases with the corresponding increase in missing
values, because the transactions do not support the itemsets
at the required level.

As a second experiment, a small database is used to
compare the results of the ~AR with those of the original
Apriori algorithm. The artificial grocery database contains
transactions containing three items. The first item
indicates the type of break purchased (either WHB, WB, or
W). The second item indicates the type of cheese
purchased (CC), and the third item indicates the type
milk that was purchased (WH). The database transactions
ale:

1. WHB, CC, WH
2. WHB, CC, WH
3. WB, CC, WH
4. WB, CC, WH
5. W, CC, WH

For this experiment, the support threshold is 0.4, the
confidence threshold is 0.9, and the match threshold is 0.6
The original Apriori algorithm discovers 4 itemsets of size
1, 5 of size 2, and 2 of size 3. The ~AR algorithm
discovers 5 itemsets of size 1, 7 of size 2, and 3 of size 3.

Best rules found:
1. breadtype=WHB 2 --> cheese---CC 2 (I)
2. breadtype=WB 2 --> cheese=CC 2 (I)
3. breadtype=WHB 2 --> milk=WH 2 (1)
4.breadtype=WB 2 ==> milk=WH 2 (I)

5. milk=WH 5 --> checse--4~C 5 (1)
6. eheese=CC 5 --> milk=WH 5 (1)
7. chic milk=WH 5 --> breadtype=WHB 5 (1)
8. eheese=CC milk=WH 5 --> breadtype=WB 5 (1)

Figure 6. Results of the grocery database.

Figure 6 summarizes the rules discovered by ~AR.
Notice that rule 7, "cheese=CC and milk=WH implies
breadtype=WHB", received a support of 5 from the
database~ The database contains only two exact matches to
this rule. However, transactions 3 through 5 match two of
the three items in the candidate itemsct and therefore
contribute 2/3 support each to the itemsct. As a result, the
combined support is 2"I + 3*2/3 = 5.

Conclusions
In this paper we introduce an enhancement to the

Apriori association rule algorithm, called ~AlL that
generates approximate association rules. The ~AR
algorithm takes into consideration missing values and
noisy data. Missing values are replaced by probability
distributions over possible values for the missing feature,
which allows the corresponding transaction to support all
itemscts that could possibly match the data. Transactions
which do not exactly match the candidate itemset may also
contribute a partial amount of support, proportionate to the
similarity between the transaction and the candidate
itemset.

We demonstrate the effectiveness of the ~AR algorithm
using sample databases. Results indicate that ~AR
successfully generates rules that approximate true
correlations in the input database. This behavior is
beneficial for databases with many missing values or
containing numeric data.

References

Breiman, L., Friedman, J. H., Olshen, R. A., and Stone,
C.J. 1983. Classification and Regression Trees.
Wadsworth International Group, Belmont, CA.

Ragel, A. 1998. Preprocessing of Missing Values Using
Robust Association Rules. In Proceedings of the Second
Pacific-Asia Conference.

http://www.cs.waikato.ae.nz/~ml/wcka/.

Lakshminarayan, K., Harp, S., Goldman, R., and Samad,
T. 1996. Imputation of missing data using machine
learning techniques. In Proceedings of the Second
International Conference on Knowledge DiscoverT in
Databases and Data Mining.

Quinlan, J.R. 1993. C4.5:
Learning. Morgan Kaufmann.

Programs for Machine

Srikant, R. and Agrawal, R. 1997. Mining Generalized
Association Rules. Future Generation Computer Systems,
13(2-3).

KNOWLEDGE DISCOVERY 263

