
Extracting partial structures from HTML documents

Hiroshi Sakamoto Yoshitsugu Murakami Hiroki Arimura Setsuo Arikawa

Department of Informatics, Kyushu University
Hakozaki 6-10-1, Hizashi-ku, Fukuoka-shi 812-8581, Japan

{hiroshi, arim, arikawa}@i.kyushu-u.ac.jp
phone: +82-92-642-2693, fax: +82-92-642-2698

Abstract

The new wrapper model for extracting text data from
HTML documents is introduced. In this model, an
HTML file is considered as an ordered labeled tree.
The learning algorithm takes the sequence of pairs of
an HTML tree and a set of nodes The nodes indicate
the labels to extract from the HTML tree. The goal of
the learning algorithm is to output the wrapper which
exactly extracts the labels from the HTML trees.
keywords: information extraction, wrapper induc-
tion, semi-structt~red data, inductive learning

Introduction
The HTML documents currently distributed on the In-
ternet can be regarded as a very large text database
and the information extraction from the Web is widely
studied. The problem of extracting the texts and at-
tributes from HTML documents is difficult because we
can not construct the XML like database by only the
limited number of HTML tags.

For this purpose Kushmerick introduced the frame-
work of the wrapper induction (Kusshmerick 2000).
An HTML document is called a page and the con-
tents of the page is called the label. The goal of the
learning algorithm is, given the sequence of examples
(P,,Ln) of pages and labels, to output the program
W such that Ln = W(P,) for all n. Other extract-
ing models, for example, are in (Hammer, Garcia-
Molina, Cho, and Crespo 1997; Chun-Nan Hsu 1998;
Muslea, Minton, Craig, and Knoblock 1998; Freitag
1998).

The program W is called Wrapper. Kushmerick de-
fined several classes of Wrappers, in particular, we ex-
plain the LR-Wrapper (Kusshmerick 2000). An LR-
Wrapper is a sequence ((gl,rl),--., (~K,rK)),
the gi is called the left delimiter and the ri is called the
right delimiter for the i-th attribute i = 1,..., K. The
attribute is the unit of extraction data and we assume
that HTML page is constructed by the finite repetitions
of K attributes.

Copyright (~) 2001, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

First, the LR-Wrapper finds the first appearance i
of the gx in the page P and finds the first appearance
j of the rt starting from the i. If such i and] are
found, it extracts the string between the i and j as the
first attribute in P and it continues to extract the next
attribute.

The idea of the learning algorithm for LR-Wrapper
is to find the li as the longest common suffix of the
strings just before the i-th attribute and the ri as the
longest common prefix of the strings immediately after
the i-th attribute. Thus, the string is so safe as to be
long. However, in the following case, we can not get a
sufficiently long delimiters.

<h2><a hreff"www, arim. com">www.arim.com

</h2><h3>
arim@arim.com
 </h3>

<h2>sal~.co.jp

</h2><h3><a hrefffi"mailto: saka@saka, co. jp">
saka~saka.co.jp
</h3>

Consider the case of extracting the attributes
"arim@arim.com" and "saka@saka.co.jp". The
learned left and right delimiters for the attributes
are the "> and
</h3>, respectively. Now,
let us extract the string "arim@arim.com". The
first appearance of the the "> is in the first line
and the first appearance of
</h3> from
this point is in the third line. Thus the extracted
string is the "www.arim.com
</h2><h3>
<a hreff"mailto: arim@arim, com">arim@arim.com".
The cause in this case is the HTML attribute values of
the <a> tags for the email addresses. Since there is no
common suffix of the strings, the LR-Wrapper can not
determine the correct delimiters.

Thus, for overcome this difficulty, we propose the new
data model for the HTML wrapper called Tee- Wrapper
over the tree structures and present the learning algo-
rithm of the Tree-Wrappers. Moreover, we experiment
the prototype of our learning algorithm for more than
1,000 pages of HTML documents.

The introduced Tree-Wrapper W is the sequence
(EPI , EPK). The EPi, called the extraction path,

264 FLAIRS-2001

From: FLAIRS-01 Proceedings. Copyright © 2001, AAAI (www.aaai.org). All rights reserved.

is the expansion of the notion of path to extract the
i-th attributes from the HTML trees. Each EP~ is of
the form (ENLil,...,ENLit), where ENLil is called
the extraction node label. The most simple ENLi~ is
the one that consists of only the node name. For a
given HTML tree, the Tree-Wrapper tries to find a path
matching with the path (ENLil,..., ENLit) and if it
is found, then the Wrapper extracts the i-th attributes
of the last node which matches with the ENLit.

Let us explain the Tree-Wrapper for the example
of the HTML document in the above. In this case,
the most simple Tree-Wrapper is W = (EPt) and
EPt = (< h3 >, < a >). This path matches with only
the paths for the email addresses. In the next sec-
tions, we introduce the data model for such extraction
and present the algorithm to learn more powerful Tree-
Wrappers. In the finial section, we show the expressive-
ness of the Tree-Wrapper by the experimental results.

The Data Model

In this section, we define the HTML tree which is con-
structed from an HTML file. First, we begin with the
notations used in this paper. An alphabet Z is a set of fi-
nite symbols. A finite sequence (al,..., an(of elements
in Z is called string and it is denoted by w = ai...an
for short. The empty string of length zero is ~. The set
of all strings is denoted by E* and let E+ = E* \ {e}.
For string w, if w = aft7, then the string a (f~)is called
a prefix (su~x) of w, respectively.

For each tree T, the set of all nodes of T is a subset
of/N = {0 , n} of natural numbers, where the 0 is
the root. A node is called a lea] if it has no child and
any other node is called an internal node. If n, m E/5/-
has the same parent, then n and m are brother and n is
a big brother of m if n _< m. The sequence (nl,... ,n~(
of nodes of T is called the path if nl is the root and ni
is the parent of ni+l for all i = 1,..., k - 1.

For each node n, the node label of n is the triple
NL(n) = (N(n), V(n),HAS(n)) such that N(n) and
V(n)are strings called the node name and node value,
respectively, and HAS(n) = {HA1,...,HAnt} is
called the set of the HTML attributes of n, where each
HAi is of the form (ai,vi) and ai,vi axe strings called
HTML attribute name, HTML attribute value, respec-
tively.

If N(n) E+andV(n)= 6, then the nis cal ledthe
element node and the string N(n) is called the tag. If
N(n) = ~TEXT for the reserved string gTEXT and
V(n) E ~+, then n is called the text node and the
V(n) called the text value. We assume that every node
n E/N is categorized to the element node or text node.

An HTML file is called a page. A page P is corre-
sponding to an ordered labeled tree. For the simplicity,
we assume that the P contains no comment part, that
is, any string beginning the <! and ending the > is
removed from the P.

Definition 1 For a page P, the Pt is the ordered la-
beled tree defined recursively as follows.

1. If P contains an empty tag <tag>, Pt has the element
node n such that it is a leaf P and N(n) = tag.

2. If P contains a string tl ¯ w ̄ t2 such that tt and t2
are tags and the w contains no tag, then Pt has the
text node n such that it is a leaf P and V(n) =

3. If P contains a string of the form

<tag at = vl,. . ¯ ,at = vt>w</tag>,

then the tree n(nl,...,nk) is the subtree of P on
n, where N(n) = tag, HAS(n) = {(ai,vi)
1,...,g}, and nl,...,nk are the trees tl t~ ob-
tained recursively from the w by the 1, 2 and 3.

Next we define the functions to get the node names,
node values, and HTML attributes from given nodes
and HTML trees defined above. These functions are
useful to explain the algorithms in the next section.
These functions return the values indicated below and
return null if such values do not exist.

¯ Parent(n): The parent of the node n E/N.
¯ ChildNodes(n): The sequence of all children of

¯ Name(n): The node name N(n) of n.
¯ Value(n): The concatenation V(nl)... V(nk) of all

values of the leaves nl,..., nk of the subtree on n in
the left-to-right order.

¯ Pos(n): The number of big brothers ni of n such that
N(ni) = Y(n).

The following functions are to get HTML attributes.

¯ HTMLAttSet(n): The HTML attribute set HAS(n)
of the node n E/hr.

¯ HTMLAttName(n,i): The HTML attribute name ai
of (ai, vi) in HAS(n).

¯ HTMLAttValue(n, i): The HTML attribute value vi
of (ai, vi) in HAS(n).

Finally, we define the notion of common HTML at-
tribute set of HTML attribute sets and define the func-
tion which gets the common HTML attribute set.

Definition 2 Let S = {HAS(ni) l i = 1,...,k} and
HAS(ni) = {(ait,vi,),..., (ait,vQ)} (i = 1,...,
The common HTML attribute set of the S, denoted by
CHAS(S), is the set (nt<i<kHAS(ni)) U where S’
is the set of (a, *) such that-each HAS(ni) contains an
HTML attribute (a, v) for the a and (a, vi) E HAS(hi),
(a, vj) E HAS(nj) and vi ~ where the ¯ isa speci al
symbol not belonging to E.

¯ CommonAttSet(HAS(nl),..., HAS(nk)): The com-
mon HTML attribute set of all HTML attribute set
HAS(ni) for i = 1,..., k.

What the HTML Wrapper of this paper extracts is
the text values of text nodes. These text nodes are
called text attributes. A sequence of text attributes is
called tuple. We assume that the contents of a page P is
a set of tuple ti = (tail,..., tai~), where the K is a con-
stant for all pages P. It means that all text attributes

KNOWLEDGE DISCOVERY 26S

in any page is categorized into at most K types. Let
us consider an example of HTML document of address
list. This list contains three types of attributes, name,
address, and phone number. Thus, a tuple is of the
form Iname, address,phone). However, this tuple can
not handle the case that some elements contain more
than two values such as some one has two phone num-
bers. Thus, we expand the notion of tuple to a sequence
of a set of text attributes, that is t = Ital,..., taK) and
tai C_ IN for all 1 < i < K. The set of tuples of a page
P is called the label of P.

Figure 1: The tree of the text attributes, name,
address, and phone.

0

The Fig.1 denotes the tree containing the text at-
tributes name, address, and phone. The first tu-
ple is tl = i{3}, {4}, (5, 6}) and the second tuple
t2 = i{8}, {}, {9}). The third attribute of tl contains
two values and the second attribute of tu contains no
values.

The Learning Algorithm for the
Tree-Wrappers

In this section, we give the two algorithm. The
first algorithm execT(P~,W) extracts the text value
the text attributes from the page Pt using given the
Tree-Wrapper W. The second algorithm learnT(E)
finds the Tree-Wrapper W for the sequence E =
..., (Pn, Ln),..., where L,, is the label of the page pn.
A pair (Pn, Ln) is called an example.

The Tree-Wrapper
Definition 3 The extraction node label is a triple
ENL = iN, Pos, HAS), where N is a node name,
Pos E /N U {*}, HAS is an HTML attribute
set. The extraction path is a sequence EP =
IENL1,..., ENLt).

An ENL = iN, Pos, HAS) of a node n is considered
as the generalization of which contains the node name,
node value, and the value of the function Pos. The first
task of execT is to find a path in Pe which matches with
the given EP and to extract the text value of the last
node of the path. The following function and definition
gives the semantics of the matching.

boolean isMatchENL(n, ENL)
/*input: node n, ENL = iN, Pos, HAS)*/
/*output: true or false*/
if(N==Name(n) && (Pos==Pos(n)]1 Pos==*) &&

isMatchHAS(n,H AS)) true;
else return false;

boolean isMatchHAS(n, HAS)
/*input: node n, HAS=(HA1,...,HA,HAa4),*/
/*HAm=ia,~, vm)*l
/*output: true or false*/
for(re=l; m _< M; m++){

if(HTMLhttValue(n,m) ~ v,, && v,~ ~
return false;

} return true;

Definition 4 Let ENL be an extraction node label
and n be a node of a page PL- The ENL matches
with the n if the function isMatchENL(n, ENL) returns
true. Moreover, let EP = IENL1,...,ENLe) be an
extraction path and p = /nl,...,ne) be a path of
page P~. The EP matches with the p if the ENLi
matches with ni for all i = 1,..., L
Definition 5 The Tree-Wrapper is the sequence
W = IEP1,...,EPK) of extraction paths EPi =
(ENL~,.. ’ ENL~ is an., ENLt,), where each extrac-
tion label.

The algorithm execT is given as follows.
Algorithm execT(P~, W)
/* input: W = IEP1,..., EPK) and Pt */
/* output: The label Lt = {tl,... ,tin} */

1. For each EPi (i = 1,...,K), find all path p
/nl,... ,nt) of Pt such that EPi matches with p and
add the pair li,n~) into the set Art. /* The nt is a
candidate for the i-th text attribute.*/

2. Sort all elements li, he) E Att in the increasing order
of i. Let LIST be the list and j = 1.

3. If the length of LIST is 0 or j > m, then halt. If
not, find the longest prefix list of LIST such that
all element is in non-decreasing order of i of / i, n}
and for all i = 1 , K, compute the set tai = {n I
(i, n) E list}. If the list is empty, then let tai = 0.

4. Let tj = Itax,...,taK), j = j + 1, remove the list
from LIST and go to 3.

The learning algorithm
Given a pair (Pn,Ln), the learning "algorithm learnT
calls the function learnExPath which finds the extrac-
tion path EP~ for the i-th text attributes and i =
1,...,K and it computes the composite EPi. EP.~~,
where EPi is the extraction path for the i-th text at-
tribute found so far. The definition of the composite
EPi ̄ EPin is given as follows and Fig.2 is an example
for a composite of two extraction path.

266 FLAIRS-2001

Definition 6 Let ENL1 and ENL2 be any extraction
node labels. The composite ENLI ̄ ENL2 is the ex-
traction node label ENL = (N, Pos, HAS) such that

1. N = N1 if N1 -- N2 and ENL is undefined otherwise,
2. Pos = Posl if Post = Pos2, and Pos = * otherwise,
3. HAS = CommonAttSet(HASi,HAS2).

Definition 7 Let EPz = (ENL~,...,ENL]) and
EP2 = (ENL~,... ,ENL~) be extraction paths. The
EP = EPI ¯ EP2 is the longest sequence (ENL}
ENL~,..., ENL~. ENL~) such that all ENL~. ENL~
are defined for i = 1,..., l, where ! _< rain{n, rn}.

Figure 2: The composite of extraction paths.

EPI ~ <HTML,0, ..-> EP2 EP3<HTML,0. e-> @ <HTML,0, e->
!
,L<BODY.0. |

T<BODY,O,

it IBODY,O,

w {<bgcolor,#flTfff>. {<bgcolor,~Y~. . {<bgcolor,/ff~ffT>,
<vlmk,#7700ff~, <vli~k,#7700f~, <vlink,#7700ff~,

¯ <linkJ,~OOOfl~. <hnk.#0000ff>. link~iXl00ff>.
I <alink,#7700ff>}>

, <alink$ff700ff>|>
| <alink,#7700f~}>~ <TABLE.*, ~ <TABLE,*, /

. {<border.0>. . |<border.0>. ~ <FONT.0.{<sme~
<celllmddm&O>. ’. <c¢llpaddm&0>,

<cellspacin~0>.
<~.ddth.tO0%>}> ! <wid’.h.lO0%>~>
<TB.0. I.,->

<TP~O. e-> @ <#text.0. e->
. <TD.0.

{< bgcolor.Mff0d0>|> ~ <TD.0.

~FONT,0,{<face, T’ {< bgcolor.#flT0d0>}>
"Ariil.Helvetsca.Geneva">}> @ <FoN’r.o.{<f~ce.
’<CENTER.0. ,.-> i "Afial.Helvetica.Genevs">}>
<FONT.O.{<size.+l>}> ~ <CENTER,O, ,.->

, <B.O. ~>
@ <#U~2, t>

,<#te.xt.O..~>

The learnExPath calls the function getPath(n) which
finds the path p from the root to the node n and for
each node ni ofp = (ne,... ,nl) (nl = n), it computes
the ENLi and returns the EP = (EPI,...,EP1). Fi-
nally, the complete description of the learning algorithm
learnT is given as follows.

Experimental Results

We equip the learning algorithm by Java language
and experiment with this prototype for HTML doc-
uments. For parsing HTML documents, we use the
OpenXML 1.2 (http://www.openxml.org) which is
validating XML parser written in Java. It can also parse
HTML and supports the HTML parts of the DOM
(http:www.w3.org/DOM).

The experimental data of HTML pages is collected
by the citeseers which is a scientific literature digital
library (http://citeseers.nj.nec.com). The data consists
of 1,300 HTML pages. We choose art1 = "the title",
att2 = "the name of authors", and att3 = "the ab-
stract" as the text attributes and practice the learnT.

All pages are indexed to be P1,-.., P1300 in the order
of the file size. The training example is E = {(P/, L/)
i = 1,..., 10}, where the Li is the label made from the
Pi in advance. The result is shown in Fig. 3 which is
the Tree-Wrapper W found by learnT(E).

learnT(E)
/*input: E={..., (P~, L,,),...}*/
/*output: Tree-Wrapper (Pn, Ln} */
/* execT(Pn, W)=Ln Tree-Wrapper W*/
L.={t~ I X < i < M~};
t,=(t~,... ,tak-);
NODE(n, k)=Oz<i<M, taik;
n=l;
do while((P,,+l, L,,+I)){

for(k=l; k _< K; k++){
if(NODE(n, k)

EP~=leanExPath(NODE(n, k))
EPk=v) EPk=EP~;

if(NODE(n, k)
E P~=leanExPath(N O D E(n, k)
EP~ != ~) EPk=EPk . EP~;

else ;
} n=n + 1;

} return W={EP1,..., EPK);

learnExPath(N O D E(n, k)
/* input: NODE(n, k)={nz,..., n,,~}
/* output: extraction path EP */
if(m== l) return EP=getPath(nl);
else j=l;
for(i=l; i < m; i++) currenti=ni;
while(V/Name(currenti)==Name(currentt)){

ENLj = (1~, Posj, HASj);
Nj =Name(currentl)
if(V/(Pos(currenti)==Pos(currentl)))

Posi=Pos(currentl)
else Posi=*;
HASj=CHAS(S);

S={HTMLAttSet(currenti)[i = 1,... ,m};
for(i=l; i < m; i++) currenti=Parent(currenti);
j=j + 1;

}
if(j==l) return false;
else return EPk = (ENLj_ 1,.. . , ENL 1);

getPath(n)
/* input: node n */
/* output: extraction path EP from the root to n */
current=n; i=1;
do while(Parent(current)){

E N Li=(Ni, P osi, H ASi)
Ni=Name(current);
P os= Pos(current)
H ASi=HTMLAttSet (current)

current=Parent(current); i=i 1;
} return EP=(ENLi_I,..., ENL1);

KNOWLEDGE DISCOVERY 267

Figure 3: The Tree-Wrapper found by learnT

EPI ~ <HTML.0. ~-> EP2 ~ <HTML.0. ~> EP3 ? <HTML~}. ,~>

<BODY,0,

+
~ <BODY,0.~ {<bgcolor.M~ff~. <BODY.0.

i<bgcolor,~mr>, | {<~color,~n~r~,<vlJnk.#77(g)ff>, , <vli~ff/700ff>.
| <vlinl~#7700ff>.<link,t~000ff>, | <linl~, <li~,

<ali~.~700~)>

I <alink~700f~}>

] <ali,~OT00~}>
<TABLE.*,) <TABLE,*,

{<border,0>.
<cellpaddmf.0>,
<celkpaci~.0>,
<width, l 0(P,t> }

) <I’R.0. ~->
) <TD.0)

{< bgcoKor,#fff0d0>}>
)<FONT.0.{<face.
"Arial.Helvet~a,Geneva"> } >
)<CENTER,0..,->
) <FONT,0o { <size,+| >}>

, <B.0. ,,->

,<#text.0...->

{<border.0>,
<ceIlpsdd/nlr.0>,
<cellspacinf.0>,
<widlh, 100e/~. } >
<TI~,0, ,,->

<TD.0.

<FONT.0.{ <face,

~<FO]~,0,{ <size#
, I>}>

~ <~ext.0...->

<#text.2. t>

Next, we practice the execT(P~, W) for the remained
pages Pi (i = 11,...,1300) to extract all tuples
(attl,att2,att3) from Pi. The three pages can not be
extracted. The Pl095 is one of the pages. We explain
the reason by this page. In Fig. 3, we can find that the
first extraction path EP1 contains the extraction node
label for the TABLE tag. The HTML attribute set HAS
of this node contains the attribute "cellpadding" whose
value is 0. However, the corresponding node in />1095
has the HTML attribute value "cellpadding= 1". Thus,
the EP1 does not match with the path.

Any other pages are exactly extracted, thus, we con-
clude that this algorithm is effective for this site.

Next, we construct the following XML like database
from the extracted contents of the pages and run the
LR-Wrapper to divide the titles and the years. This
XML file Cu corresponds to the content of the PH.

<contents>
<tupple>
<attrl>A System for Induction of Oblique Decision
Trees(1994)</attrl>
<attr2>Sreerama K. Murthy, Simon Kasif, Steven
Salzberg</attr2>
<attr3>This article describes a new system for induction
of oblique decision trees. This system, OC1, combines...
</attr3>
</tupple>
</contents>

The learned LR-Wrapper is as follows. On some
pages, the published year are omitted. In such case,
the LR-Wrapper can not extract the exact texts.
((’ <contents> ~ <tupple> ~ <attrl>’,’ (’),
(’ (’,’)</attrl> ~ <attr2>’),
()) </attrl> ~ <attr2>) , ’ </attr2> ~ <attr3>’)~
()</attr2> ~ <attr3>’~
)</attr3> ~ </tupple> ~ </contents> $))

The future work of this study is to expand the Tree-
Wrapper so that it can extract the HTML attributes
rather than the text attributes. We also expand the
prototype to extract substrings of the text values for
overcome the above difficulty.

References

Abiteboul, S., Buneman, P., and Suciu, D. 2000. Data
on the Web: From relations to semistructured data
and XML, Morgan Kaufmann, San Francisco, CA,
2000.

Angluin, D. 1988. Queries and concept learning. Ma-
chine Learning 2:319-342.

Cohen, W. W. and Fan, W. 1999. Learning Page-
Independent Heuristics for Extracting Data from Web
Pages, Proc. WWW-99.
Craven, M., DiPasquo, D., Freitag, D., McCailum, A.,
Mitchell, T., Nigam, K., and Slattery, S., 2000. Learn-
ing to construct knowledge bases from the World Wide
Web, Artificial Intelligence 118:69-113.

Freitag, D. 1998. Information extraction from HTML:
Application of a general machine learning approach.
Proc. the Fifteenth National Conference on Articial
Intelligence, pp. 517-523.

Hirata, K, Yamada, K., and Harao, M. 1999. Tractable
and intractable second-order matching problems.
Proc. 5th Annual International Computing and Com-
binatories Conference. LNCS 1627:432-441.

Hammer, J., Garcia-Molina, H., Cho, J., and Cre-
spo, A. 19967. Extracting semistructured information
from the Web. Proe. the Workshop on Management o]
Semistrnctured Data, pp. 18-25.

Hsu, C.-N. 1998. Initial results on wrapping semistruc-
tured web pages with finite-state transducers and con-
textual rules. In papers from the 1998 Workshop on AI
and Information Integration, pp. 66-73.

Kamada, T. 1998. Compact HTML for small in-
formation appliances. W3C NOTE 09-Feb-1998.
vvw. w3. org/TR/1998/NOTE-compactHTML- 19980209

Kushmerick, N. 2000. Wrapper induction: efficiency
and expressiveness. Artificial Intelligence 118:15-68.

Muslea, I., Minton, S., and Knoblock, C. A. 1998.
Wrapper induction for semistructured, web-based in-
formation sources. Proc. the Conference on Automated
Learning and Discovery.

Sakamoto, H., Arimura, H., and Arikawa, S. 2000.
Identification of tree translation rules from examples.
Proc. 5th International Colloquium on Grammatical
Inference. LNAI 1891:241-255.
Valiant, L. G. 1984. A theory of the learnable. Com-
mun. ACM 27:1134-1142.

268 FLAIRS-2001

