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Abstract

Imperfections in data can arise from many sources. The qual-
ity of the data is of prime concern to any task that involves
data analysis. It is crucial that we have a good understanding
of data imperfections and the effects of various noise han-
dling techniques. We study here a number of noise handling
approaches, namely, robust algorithms that are tolerant of
some amount of noise in the data, filtering that eliminates the
noisy instances from the input, and polishing which corrects
the noisy instances rather than removing them. We evaluated
the performance of these approaches experimentally. The re-
sults indicated that in addition to the traditional approach of
avoiding overfitting, both filtering and polishing can be vi-
able mechanisms for reducing the negative effects of noise.
Polishing in particular showed significant improvement over
the other two approaches in many cases, suggesting that even
though noise correction adds considerable complexity to the
task, it also recovers information not available with the other
two approaches.

Introduction

Imperfections in data can arise from many sources, for in-
stance, faulty measuring devices, transcription errors, and
transmission irregularities. Except in the most structured
and synthetic environment, it is almost inevitable that there
is some noise in any data we have collected. Data quality
is crucial to any task that involves data analysis, and in par-
ticular in the domains of machine learning and knowledge
discovery, where we have to deal with copious amounts of
data. It is thus essential that we have a good understanding
of data imperfections and the effects of various noise han-
dling techniques.

‘We have identified three main approaches to coping with
noise, namely, robust algorithms, filtering, and correction.
In this paper we study these three approaches experimen-
tally, using a representative method from each approach for
evaluation. The effectiveness of the three methods are com-
pared in the setting of classification.

Below we will first discuss the three general approaches
to noise handling, and their respective advantages and dis-
advantages. We will describe one of the more novel ap-
proaches, data polishing, in more detail. Then we will out-
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line the setup for experimentation, and report the results on
predictive accuracy and size of the classifiers built by the
three methods in our study. Additional observations are
given in the last section.

Approaches to Noise Handling

Noise in a data set can be dealt with in three broad ways.
We may leave the noise in, filter it out, or correct it. In the
first approach, the data set is taken as is, with the noisy in-
stances left in place. Algorithms that make use of the data
are designed to be robust,; that is, they can tolerate a certain
amount of noise. This is typically accomplished by avoid-
ing overfitting, so that the resulting classifier is not overly
tuned to account for the noise. This approach is taken by,
for example, c4.5 (Quinlan 1987) and CN2 (Clark & Niblett
1989).

In the second approach, the data is filtered before being
used. Instances that are suspected of being noisy accord-
ing to certain evaluation criteria are discarded (John 1995;
Brodley & Friedl 1996; Gamberger, Lavra¢, & Dzeroski
1996). A classifier is then built using only the retained in-
stances in the smaller but cleaner data set. Similar ideas
can be found in robust regression and outlier detection tech-
niques in statistics (Rousseeuw & Leroy 1987).

In the third approach, the noisy instances are identified,
but instead of tossing them out, they are repaired by replac-
ing the corrupted values with more appropriate ones. The
corrected instances are then reintroduced into the data set.
One such method, called polishing, has been investigated
in (Teng 1999; 2000).

There are pros and cons to adopting any one of these ap-
proaches. Robust algorithms do not require preprocessing
of the data, but a classifier built from a noisy data set may be
less predictive and its representation may be less compact
than it could have been if the data were not noisy. By fil-
tering out the noisy instances from the data, there is a trade-
off between the amount of information available for building
the classifier and the amount of noise retained in the data set.
Data polishing, when carried out correctly, would preserve
the maximal information available in the data, approximat-
ing the noise-free ideal situation. The benefits are great, but
so are the associated risks, as we may inadvertently intro-
duce undesirable features into the data when we attempt to
correct it.
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We will first outline the basic methodology of polishing
in the next section, and then describe the experimental setup
for comparing these three approaches to noise handling.

Polishing

Traditionally machine learning methods such as the naive
Bayes classifier typically assume that different components
of a data set are (conditionally) independent. It has often
been pointed out that this assumption is a gross oversimpli-
fication; hence the word “naive” (Mitchell 1997, for exam-
ple). In many cases there is a definite relationship within
the data; otherwise any effort to mine knowledge or patterns
from the data would be ill-advised.

Polishing takes advantage of this interdependency be-
tween the components of a data set to identify the noisy el-
ements and suggest appropriate replacements. Rather than
utilizing the features only to predict the target concept, we
can just as well turn the process around and utilize the target
together with selected features to predict the value of an-
other feature. This provides a means for identifying noisy
elements together with their correct values. Note that except
for totally irrelevant elements, each feature would be at least
related to some extent to the target concept, even if not to
any other features.

The basic algorithm of polishing consists of two phases:
prediction and adjustment. In the prediction phase, elements
in the data that are suspected of being noisy are identified
together with a nominated replacement value. In the ad-
justment phase, we selectively incorporate the nominated
changes into the data set. In the first phase, the predictions
are carried out by systematically swapping the target and
particular features of the data set, and performing a ten-fold
classification using a chosen classification algorithm for the
prediction of the feature values. If the predicted value of a
feature in an instance is different from the stated value in
the data set, the location of the discrepancy is flagged and
recorded together with the predicted value. This informa-
tion is passed on to the next phase, where we institute the
actual adjustments.

Since the polishing process itself is based on imperfect
data, the predictions obtained in the first phase can contain
errors as well. We should not indiscriminately incorporate
all the nominated changes. Rather, in the second phase, the
adjustment phase, we selectively adopt appropriate changes
from those predicted in the first phase, using a number of
strategies to identify the best combination of changes that
would improve the fitness of a datum. We perform a ten-fold
classification on the data, and the instances that are classified
incorrectly are selected for adjustment. A set of changes to
a datum is acceptable if it leads to a correct prediction of the
target concept by all ten classifiers obtained from the ten-
fold process.

Further details of polishing can be found in (Teng 1999;
2000).

Experimental Setup

Below we report on an experimental study of three represen-
tative mechanisms of the the noise handling approaches we
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have discussed, and compare their performance on a number
of test data sets.

The basic learning algorithm we used is c4.5 (Quinlan
1993) the decision tree builder. Three noise handling mech-
anisms were evaluated in this study.

Robust : c4.5, with its built in mechanisms for avoiding
overfitting. These include, for instance, post-pruning,
and stop conditions that prevent further splitting of a leaf
node.

Filtering : Instances that have been misclassified by the de-
cision tree built by c4.5 are discarded, and a new tree is
built using the remaining data. This is similar to the ap-
proach taken in (John 1995).

Polishing : Instances that have been misclassified by the
decision tree built by c4.5 are polished, and a new tree is
built using the polished data, according to the mechanism
described in the previous section.

Twelve data sets from the UCI Repository of machine learn-
ing databases (Murphy & Aha 1998) were used. These are
shown in Table 1. The training data was artificially cor-
rupted by introducing random noise into both the attributes
and the class. A noise level of 2% means that the value of
each attribute and the target class is assigned a random value
2% of the time, with each alternative value being equally
likely to be selected.

The actual percentages of noise in the data sets are given
in the columns under “Actual Noise” in Table 1. These val-
ues are never higher, and in almost all cases lower, than the
advertised x%, since the original noise-free value could be
selected as the random replacement as well. Also shown in
Table | are the percentages of instances with at least one cor-
rupted value. Note that even at fairly low noise levels, the
majority of instances contain some amount of noise.

Results

We performed a ten-fold cross validation on each data set,
using the above three methods (robust, filtering, and polish-
ing) in turn to obtain the classifiers. In each trial, nine parts
of the data were used for training, and the remaining one
part was held for testing. We compared the classification ac-
curacy and size of the decision trees built. The results are
summarized in Tables 2 and 3.

Table 2 shows the classification accuracy and standard de-
viation of trees obtained using the three methods. We com-
pared the methods in pairs (robust vs. filtering; robust vs.
polishing; filtering vs. polishing), and differences that are
significant at the 0.05 level using a one-tailed paired £-test
are marked with an *. (An “x” indicates the latter method
performed better than the former in the pair being compared;
a “—x” denotes that the difference is “reverse”: the former
method performed significantly better than the latter.)

Of the three methods studied, we can establish a general
ordering of the resulting predictive accuracy. Except for the
nursery data set at the 0% noise level, and the zoo data set
at the 10% noise level, in all other cases, where there was a
significance difference, polishing gave rise to a higher clas-
sification accuracy than filtering, and filtering gave rise to a



Data Set Noise Level || Actual Noise Instances
with Noise

audiology 0% 0.0% 0.0%
10% 52% 96.0%

20% 10.6% 100.0%

30% 15.5% 100.0%

40% 21.4% 100.0%

car 0% 0.0% 0.0%
10% 6.8% 39.4%

20% 14.6% 66.8%

30% 21.4% 82.9%

40% 28.4% 90.5%

LED-24 0% 0.0% 0.0%
10% 5.3% 74.8%

20% 10.3% 94.2%

30% 15.4% 98.3%

40% 20.9% 99.9%

lenses 0% 0.0% 0.0%
10% 5.8% 29.2%

20% 13.3% 50.0%

30% 15.6% 45.8%

40% 23.3% 75.0%

lung cancer 0% 0.0% 0.0%
10% 7.3% 100.0%

20% - 14.8% 100.0%

30% 21.9% 100.0%

40% 27.5% 100.0%

mushroom 0% 0.0% 0.0%
10% 7.3% 82.5%

20% 14.8% 97.4%

30% 22.1% 99.8%

40% 29.5% 100.0%

Data Set Noise Level || Actual Noise Instances
with Noise

nursery 0% 0.0% 0.0%
10% 6.9% 47.4%

20% 13.9% 74.2%

30% 20.8% 87.7%

40% 27.9% 94.7%

promoters 0% 0.0% 0.0%
10% 7.6% 97.2%

20% 14.3% 100.0%

30% 22.0% 100.0%

40% 29.9% 100.0%

soybean 0% 0.0% 0.0%
10% 5.6% 85.7%

20% 11.5% 96.2%

30% 17.0% 99.6%

40% 22.9% 100.0%

splice 0% 0.0% 0.0%
10% 7.4% 98.9%

20% 150% - 100.0%

30% 22.5% 100.0%

40% 30.1% 100.0%

vote 0% 0.0% 0.0%
10% 6.4% 66.2%

20% 12.9% 89.2%

30% 19.8% 97.7%

40% 26.0% 99.8%

Z00 0% 0.0% 0.0%
10% 5.4% 63.4%

20% 11.8% 87.1%

30% 15.6% 98.0%

40% 20.0% 100.0%

Table 1: Noise characteristics of data sets at various noise levels.

higher classification accuracy than c4.5 alone. The results
suggested that both filtering and polishing can be effective
methods for dealing with imperfections in the data. In addi-
tion, we also observed that polishing outperformed filtering
in quite a number of cases in our experiments, suggesting
that correcting the noisy instances can be of a higher utility
than simply identifying and tossing these instances out.

Now let us look at the average size of the decision trees
built from data processed by the three methods. The re-
sults are shown in Table 3. There is no clear trend as to
which method performed the best, but in almost all cases,
the smallest trees were given by either filtering or polishing.
Which of the two methods worked better in terms of reduc-
ing the tree size seemed to be data-dependent. In about half
of the data sets, polishing gave the smallest trees at all noise
levels, while the results were more mixed for the other half
of the data sets.

To some extent it is expected that both filtering and polish-
ing would give rise to trees of a smaller size than plain c4.5.
By eliminating or correcting the noisy instances, both of
these methods strive to make the data more uniform. Thus,
fewer nodes are needed to represent the cleaner data. In ad-
dition, the data sets obtained from filtering are smaller in
size than both the corresponding original and polished data
sets, as some of the instances have been eliminated in the
filtering process. However, judging from the experimental

results, this did not seem to pose a significant advantage for
filtering.

Remarks

We studied experimentally the behaviors of three methods of
coping with noise in the data. Our evaluation suggested that
in addition to the traditional approach of avoiding overfit-
ting, both filtering and polishing can be viable mechanisms
for reducing the negative effects of noise. Polishing in par-
ticular showed significant improvement over the other two
approaches in many cases. Thus, it appears that even though
noise correction adds considerable complexity to the task, it
also recovers information not available with the other two
approaches.

One might wonder why we did not use as a baseline for
evaluation the “perfectly filtered” data sets, namely, those
data sets with all known noisy instances removed. (It is pos-
sible in this setting, since we added the noise into the data
sets ourselves.) While such a data set would be perfectly
clean, it would also be very small. Table 1 shows the per-
centages of instances with at least one noisy element. Even
at the 10% noise level, in the majority of data sets more than
50% of the instances are noisy. This percentage grows very
quickly to almost 100% as the noise level increases. Thus,
we would have had only very little data to work with if we
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Table 2: Classification accuracy with standard deviation. An “+” indicates a significant improvement of the latter method over
the former at the 0.05 level. A “—+” indicates a “reverse” significant difference: the former method performed better than the

latter.

212

Data Set Noise Level Classification Accuracy + Standard Deviation Significant Difference
Robust Filtering Polishing Robust/  Robust/  Filtering/
Filtering  Polishing Polishing
audiology 0% || 180EX7.7% 7715x+7.8% 80.2E7.0%
10% || 73.0x79% 73.0+x7.8%  73.0+5.8%
20% || 67.8+8.0% 67.7+59%  70.9+52% *
30% || 54.8+11.5% 54.5+11.5% 61.6 +7.8% * *
40% || 33.6+11.7% 425+80%  482%57% * *
car 0% || 932£1.7% 928x1.6% 9290x1.6%
10% || 86.3+2.6%  86.3+25%  86.7+29%
20% || 83.6+3.3%  83.6x32%  84.3+2.7% * *
30% | 76.5+23%  76.5+2.0%  80.6+2.5% * *
0% || 745+21%  744+22%  77.1+£2.0% * *
LED-24 0% || 100.0 £0.0% 100.0 £0.0% 100.0£0.0%
10% || 100.0 £ 0.0% 100.0 £0.0%  100.0 £ 0.0%
20% || 923+4.3%  955+£38%  97.2+2.2% * *
30% || 76.2+4.7%  83.2+£39%  90.0+3.3% * * *
40% [ 494+59% 53.8+6.1%  68.1+5.3% * * *
Tenses 0% || 83.3%£30.7% 83.3x30.7% 86.7x30.5%
10% || 500+24.7% 50.0+247% 78.3+31.7% * *
20% || 55.0+28.9% 55.0+28.9% 73.3+32.7% * *
30% || 48.3+32.9% 48.3+32.9% 56.7+41.6%
40% || 58.3+38.2%  58.3 +38.2%  60.0 + 30.9%
Tung cancer 0% || 50.0 £23.9% 475 £224% 54.2£31.0%
10% || 30.8+24.2% 43.3+31.1% 46.7 +23.6% *
20% || 45.8+37.5% 39.2+329% 54.2+37.1%
30% [| 57.5+26.0% 55.0+£27.7% 55.0 +27.7%
40% || 50.8+16.9%  56.7+£20.0% 63.3 + 24.8% *
mushroom 0% || 100.0 £0.0% 100.0 £0.0% 100.0 £0.0%
10% || 99.9+0.1%  99.9+0.1%  100.0 +0.1%
20% || 99.7+04%  99.7+04% 1000 +0.1% * *
30% || 989+06%  989+0.6%  99.3 +0.6% * *
40% || 98.6+05%  98.6+05%  98.8+0.5%
nursery 0% || 97.0£0.4% 968 £0.4% 968 £0.3% —* e
10% || 944+04%  945+0.5%  94.5+0.4%
20% || 90.9+06%  91.0+0.6%  91.2+0.8% * * *
30% || 90.0+0.7%  90.0+£0.7%  90.3+1.0% *
0% || 874+1.1% 874%x11%  88.1+0.7% * *
promoters 0% || 75.6 £13.56% 175.6X13.6% 77.5X£16.7%
10% || 73.0+£12.5% 73.0+12.5% 80.4 +10.4% * *
20% || 65.9+9.0% 66.8+82%  785+12.7% * *
30% || 55.6+10.3% 59.3+14.1% 679 +15.0% * *
40% || 55.6+14.7% 57.4+14.7% 58.5+14.8% *
soybean 0% || 921 £2.0% 918+£22% 9R2I1x18%
10% || 86.2+49%  85.7+4.7%  88.7+2.3%
20% || 83.0+3.3% 825+46%  85.8+3.6% * *
30% || 722+6.1% 76.7+3.7%  76.7+4.4% * *
40% || 50.7+84% 51.2+55%  55.4+3.7% * *
splice 0% || 940£13% 941x15% 9042x1.4%
10% || 89.3+1.8% 896+16%  91.8+1.5% * *
20% || 83.1+21%  835%+1.7%  88.3+1.5% * *
30% || 73.1+£40%  73.1x3.2%  83.8+2.6% * *
40% || 61.6+£2.9% 63.9+22%  72.3+3.0% * * *
vote 0% || 947 E£20% 947E£20% 947+25%
10% || 94.7+£25%  94.7+25%  95.2+3.0%
20% || 940+2.1% 936+1.7%  95.4+2.3% * *
30% {| 929+32%  92.7+29%  90.6 £5.5%
0% || 924+3.1%  924+3.1%  92.8+3.9%
z0o 0% || 922£7.2%  922x7.2% 93.1x64%
10% || 91.2+81%  883+93% 95.2+7.7% —* *
20% || 83.2+7.8%  842+6.5%  85.2+9.1%
30% || 77.4+11.4% 793+92%  86.2+4.7% * *
40% || 78.3+11.5% 803+9.8%  87.1+7.8% * *
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Data Set Noise Level Robust Filtering  Polishing Data Set Noise Level Robust Filtering Polishing
audiology 0% 50.5 45.4 47.0 nursery 0% 508.4 473.3 464.1
10% 66.6 44.3 56.2 10% 315.3 304.5 286.4
20% 90.3 58.8 90.9 20% 177.0 167.6 149.5
30% 125.0 76.8 121.6 30% 174.8 164.9 133.6
40% 143.3 89.3 130.1 40% 258.0 235.3 212.6
car 0% 173.4 169.1 169.1 promoters 0% 214 21.4 12.2
10% 108.5 105.1 102.1 10% 21.8 21.8 12.2
20% 103.7 104.0 102.7 20% 28.2 28.2 15.0
30% 88.8 81.7 104.0 30% 32.2 29.0 17.4
40% 41.6 41.3 61.2 40% 34.6 32.6 34.2
LED-24 0% 19.0 19.0 19.0 soybean 0% 9.1 88.7 91.2
10% 78.2 69.4 34.8 10% 157.9 131.6 162.7
20% 193.4 134.6 85.6 20% 202.5 146.7 189.2
30% 335.8 231.0 162.4 30% 278.5 184.0 218.7
40% 490.8 347.2 317.8 40% 328.7 209.2 289.4
lenses 0% 6.4 6.4 5.0 splice 0% 171.8 168.2 156.2
10% 4.2 4.0 6.7 10% 318.2 294.6 120.6
20% 3.5 3.5 34 20% 537.4 512.2 233.4
30% 3.8 3.8 7.3 30% 836.2 793.4 335.4
40% 3.9 3.9 4.5 40% 1143.0 1036.6 680.2
lung cancer 0% 19.0 15.0 14.2 vote 0% 14.5 14.5 5.8
10% 20.6 19.0 23.0 10% 17.8 17.2 13.6
20% 15.8 15.4 15.4 20% 20.8 19.0 11.8
30% 12.2 11.0 11.8 30% 43.3 38.5 24.7
40% 16.6 15.0 16.2 40% 27.1 27.1 19.6
mushroom 0% 30.6 30.6 30.6 Z00 0% 17.8 17.6 16.2
10% 214.3 207.2 109.9 10% 24.2 21.8 21.2
20% 268.3 244.8 124.6 20% 20.6 19.8 22.2
30% 345.0 325.5 129.3 30% 30.2 21.2 30.0
40% 535.2 519.2 286.4 40% 35.4 25.8 30.0

Table 3: Average size

had opted for a perfectly filtered data set. Note that, how-
ever, ironically we may end up in this situation if our filter-
ing technique becomes too effective.

While we have evaluated the performance of the noise
handling methods against each other, there is no reason why
we cannot combine these methods in practice. The different
methods address different aspects of data imperfections, and
the combined mechanism may be able to tackle noise more
effectively than any of the individual component mecha-
nisms alone. However, first we need to achieve a better un-
derstanding of the behaviors of these mechanisms before we
can utilize them properly.
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