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Abstract

When constructing a Bayesian network, it can be ad-
vantageous to employ structural learning algorithms to
combine knowledge captured in databases with prior
information provided by domain experts. Unfortu-
nately, conventional algorithms do not exploit the oc-
currence of repetitive structures, which are often found
in object oriented domains such as fault prediction in
computer networks and large pedigrees.
In this paper we propose a method for structural learn-
ing in object oriented domains. It is demonstrated that
this method is more efficient than conventional algo-
rithms, and it is argued that the method supports a
natural approach for expressing the prior information
of domain experts.

Introduction

Bayesian Networks (BNs) (Pearl, 1988; Jensen, 1996)
have established themselves as a powerful tool in many
areas of artificial intelligence. However, one of the re-
maining obstacles is to create and maintain very large
domain models. To remedy this problem, object ori-
ented versions of the BN framework have been proposed
in the literature, see e.g. (Koller and Pfeffer, 1997;
Bangs0 and Wuillemin, 2000). Although these frame-
works relieve some of the problems when modeling large
domains, it may still be difficult to elicit the parameters
and the structure of the model. (Langseth and Bangso,
2001) describes a method to efficiently learn the pa-
rameters in an object oriented domain, but the prob-
lem of specifying the structure still remains. Structural
learning methods provide a way to combine an expert’s
knowledge with information from a database. Unfor-
tunately, though, conventional structural learning algo-
rithms, see e.g. (Heckerman eta]., 1994), do not exploit
that the domain may be object oriented.

This paper focuses on structural learning in object
oriented domains, and a method for learning the struc-
ture of Object Oriented Bayesian Networks (OOBNs) 
proposed. The OOBN framework provides an intuitive
way of specifying prior knowledge for the structural
learning algorithm. Furthermore, it is demonstrated
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that this learning method is more efficient than con-
ventional learning methods.

Conventional structural learning

In what follows we outline the basis for performing con-
ventional structural learning.

Let :D denote a database of cases {C1,. ¯., CN}, where
each case is a configuration x over a set of discrete vari-
ables X = (X1,... ,Xn).

The BD metric

A Bayesian approach for measuring the fitness of a
Bayesian network structure Bs, is its posterior prob-
ability given the database:

P(BsI:D, L) = c. P(Bs]L)P(:DJBs, 

where c = 1/{~-IB P(BI~)P(:DIB, L)) and E. is the 
knowledge. The normalization constant c does not de-
pend on Bs, thus P(D, Bst~) = P(BsI~}P{DIBs,~) 
usually used as the network score. We shall use the
following notation to describe the qualitative proper-
ties of Bs: rt is the number of states of Xi, qt is the
number of possible configurations over the parents of
Xi and zq = j denotes the j’th configuration over the
parents of Xt. For the quantitative properties, we use
Otjk P(Xi kiwi j],O~j ~’ ’~ 0.... Uk=l O-Ljk , Oi. "~-- Uj= 1 i.j

and OBs = U]’=lOi.
The probability P(7), BsI~.) can be computed in closed

form based on the following five assumptions: 1) the
database :D is a multinomia] sample from some Bayesian
network with parameters OBs, 2) the parameters Oij
are independent, 3) the database is complete, 4) the
densities of the parameters Otj depend only on the
structure of the Bayesian network that is local to
variable Xt (parameter modularity), and finally 5) the
prior distribution of the parameters in every complete
Bayesian network Bsc has a Dirichlet distribution, i.e.,
there exist numbers (virtual counts) N~jk > 0 s.t.:

HNN[~k-1
P(Oi~IBs~, ~,) o( ~tjk 

k

As mentioned above, P(D,BsIL) can now be com-
puted in closed form given these five assumptions
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(Cooper and Herskovits, 1992):

P(D, BsI~,) = P(BslE,) 1-[~=I H~]----il F[N~i+NH}

~ r(N~k+N~I (1)l-lk=l r’(N~ 0 ,

where F is the Gamma function satisfying F(x + I) 
xF(x) and Ntik is the number of cases in T) where xi 

r~and xt -- j; Nii -- }’-~] N~jk and N~j -- Y-k=1 ’Nijk.

This metric is known as the BD metric (Bayesian met-
ric with Dirichlet priors). Unfortunately it, requires the
specification of the virtual counts N~ik for every com-
ph:te Bayesian network structure.

The BDe metric

Another drawback of the BD metric is that, networks
which are likelihood equivalent, i.e. they encode the
same assertions about conditional independence, need
not be given the same score. Note that data cannot be
used to discriminate between such networks. To over-
conle this problem, (Hcckernlan et al., 1994) describes
the BDe metric (Bayesian metric with Dirichlet priors
and equiwllence) which gives tile same score to likeli-
hood equivalent networks. Furthermore, it provides a
simple way of identifying the virtual counts in Equa-
tion 1.

The inetric is based on the concept of sets of network
structures. Each set is represented by a member B s,
and all members in a set satisfy the same independence
assertions as Bs. Moreover, structures that belong to
the salne se.t are given the same score.

Tile virtual counts in Equation 1 can now be assessed
by exploiting the notion of an equivalent sample size N ~:

N’ = P(X, XnlBs~ L). N’,XI ..... Xn ~ " ’ " ~

wtmre N’ = }--x, ..... x,, N~(, ..... x,’ Thus, all the virtual
counts can be found by constructing a BN for X and
indicating the single value N ~.

Finally, to calculate the score (Equation 1) we also
need a prior probability P{BsJ~.) for the network struc-
tures. (Heckerman et al., 1994) uses the simple con-
struction:

P(BsI~,] oc *,

where 6= Y-i=]’~ St.. and 5i denotes the number of par-
ents fbr X~ that diffcrs in tile prior BN and Bs; each such
parent is penalized by a constant 0 < K < 1. Note that
this probability both captures the information from the
prior BN and, if the. prior network is sparse, penalizes
the complexity of Bs.

The structural EM algorithm
In most real world problems we rarely have access to a
complete database, hence Assumption 3 of the BD met-
ric is likely to be violated. To accommodate those sit-
uations, (Friedman, 1998) describes the Structural 
(SEIvl) algorithm which basically "fills in" the missing
vahms before searching the joint space of structures and
parauleters.

The SEM algorithm tries to maximize P(/:),BsI~.),
but instead of maximizing this score directly it max-
imizes the expected score. Let o be the set of obser-
vations from the database/:), and let 7/ be the set of
unobserved entries in /:). The general algorithm can
then be outlined as:
Loop for rt = 0, 1 .... until convergence
a) Compute the posterior P[OB~,IB~, o).
b) E-step: For each Bs, compute:

Q(Ss : B~’)s = E[log e(7/, o, Bs)IB~, 
c) M-step: Choose B~~+1 ~-- Bs that

maximizes Q(Bs :B~).
d) If Q(B~ : B~} = Q(B’t+’ B~s : ] then

Return B~~.
By exploiting linearity of expectation, (Friedman, 1998)
derives an approximation for the summation in the E-
step. Moreover, it is shown that by maximizing the
expected score at each iteration we always obtain a bet-
ter network in terms of its marginal score, P (o, B s ); this
result also implies that tile algorithm converges.

Object Oriented Bayesian Networks

In what fbllows the OOBN framework of (Bangs0 and
Wuillemin, 2000) will be outlined. The description is
based on an example, that is also used to illustrate how
structural learning is performed.

In the example a farm with two milk cows and two
meat cows is modeled by an OOBN. These two types of
cows are described by the classes MILK Cow a~d MEAT
COW. Following the object oriented idea, a superclass
(GENERIC COW) for the cows is introduced to encapsu-
late their shared properties. The class GENERIC COW
describes the general relationship between the food a
cow eats, who the mother of the cow is and how much
meat and milk it produces, see Figure 1. Mo’cher and
Food are input nodes; a reference to a node outside the
class. Milk and Heat are output nodes; variables from
a class that are usable outside the class. The sets of
input nodes and output nodes are disjoint and form the
interface of the class. A class may be instantiated sev-
eral times with different nodes having influence on the
different instantiations through the interface (e.g. the
cows might have different mothers), so only the num-
ber of states of the input nodes is known. Moreover all
instances of a class are assumed to be identical w.r.t.
both parameters and structure. This assumption will
be referred to as the O0 assumption.

In the example, the classes MILK COW and MEAT
cow are both subclasses of the class GENERIC COW,
so they must have the same or larger sets of input and
output nodes as the class GENERIC COW. This ensures
that a subclass can be used anywhere instead of one
of its superclasses. Figure 2 illustrates the class MILK
COW (an illustration of the class MEAT COW is left out
due to space limitations). All nodes in a subclass in-
herits the potentials of the corresponding nodes in its
superclass unless they are overwritten. If a new parent
is added to a node in a subclass, the inherited potential
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Generic cow

~\ Food : t Mother j

Figure 1: The GENERIC COW class. The arrows are
links as in normal BNs. The dotted ellipses are input
nodes, and the shaded ellipses are output nodes.

will be overwritten e.g. the potential for Metabolism is
assigned a new parent in the class MILK COW (State
of mind) so the potential is overwritten. It is, however,
also possible to directly overwrite an inherited poten-
tial, e.g. the potential for Metabolism is assigned a new
parent in the class MILK COW (State of mind so the
potential is overwritten.

Milk cow IS A Generic cow

Food ~ ~ Mother ~ ~ Music

Figure 2: The specification of the class MILK COW.
Note that the input set is larger than the input set of
the GENERIC COW (Figure i).

The live-stock of the farm is represented by the class
STOCK, in Figure 3, where the boxes indicate instances
of a class e.g. Cowl is an instance of the class MEAT
COW. Note that only input nodes and output nodes are
visible, as they are the only nodes of an instance that
are available to the encapsulating class (STOCK). The
double arrows (termed reference links) indicate that an
input node is referencing a node outside the instanti-
ation, e.g. the input node Mother of Cowl references
the node Daisy. The direction of a reference link im-
plies that the parent is used in the instantiation. Notice
that not all of the Mother nodes in the STOCK speci-
fication are referencing a node. To ensure that these
nodes are associated with a potential, the notion of a
default potential is introduced. A default potential is
a probability distribution over the states of an input
node, and is used when the input node is not referenc-
ing any node. Inference can be performed by compiling
the OOBN into a multiply-sectioned Bayesian network
(Xiang et al., 1993), or by constructing the underlying
BN, see (Bangs( and Wuillemin, 2000) for details.
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Structural Learning in OOBNs
When performing structural learning, it is expedient to
take advantage of prior knowledge about the structure
of the domain. For example, it is often the case that a
domain expert is able to partition the variables of the
domain into subsets that have high internal coupling,
and low external coupling. In addition the domain ex-
pert may be able to identify certain subsets represent-
ing different entities with the same properties. This
closely resembles a partitioning of the domain variables
into instances, where instances with the same proper-
ties belong to the same class.

A natural requirement for structural learning in an
object oriented domain is that given prior knowledge
(represented by a partial OOBN model) and data about
the domain, the resulting model should still be an
OOBN. This is, however, not ensured by conventional
learning methods.

Another aspect of structural learning is the complex-
ity of the search space. The complexity varies with
the prior knowledge, and in this paper we consider
two distinct levels of prior knowledge. Notice that this
prior knowledge concerns the object orientation of the
domain, and it is therefore not easily exploited in a
conventional setting. This implies that the proposed
method is expected to produce better results than con-
ventional learning, since a reduction of the search space
reduces the number of local maxima encountered. The
proposed method learns from complete (or completed)
data, so each instance is d-separated from the rest of
the network, given its interface (Bangs( and Wuillemin,
2000). Hence, the structure inside each class can be
learned locally in the class.

To evaluate a candidate structure during model
search, the parameters in the model must be esti-
mated. We utilize the object-oriented learning method
by (Langseth and Bangs(, 2001), where cases from 
instances of a class are regarded as (virtual) cases of the
class. That is, learning is performed in the class speci-
fications, mad not in each instantiation. However, this
requires that it must be known what parents a node
has, in each instance where it appears. The search
for a good set of parents is not necessarily local to a
class when the interface is not given. Consider Cow3
and Cow4 that are both instances of the class MILK
COW. If Cow3.Metabolism gets a new parent during
model search, Cow4.Metabolism must be assigned a
new parent as well (due to the OO assumption). 
Cow3.Metabolism is assigned an input node as par-
ent and that input node references Weather, the search
algorithm should find a node Z that has the same influ-
ence on Cow4.Metabolism (by way of the input node)
as Weather has on Cow3.Metabolism (given the cur-
rent model). The search for Z must therefore (:over all
output nodes in all instances in STOCK, as well as all
nodes in the encapsulating class, STOCK. Note that Z
may be non-existent in which case the default potential
for the input node is used. The complexity of finding
the best candidate for all instances is exponential in the



Stock

Figure 3: The STOCK with two MILK COWS and two MEAT COWS. Note that some input nodes are not referencing
any nodes.

number of instances, and we risk using a non-negligible
amount of time to evaluate models with low score.

The following is a description of the two levels of
information, which is considered.
Plain object oriented learning. The modeler indi-
cates the instance each node belongs to and whether
or not, it is a possible output node. Each instance is
associated with a class as well.
With this information, all possible nodes should be
investigated to see if they should be referenced by
any of the input nodes of each instance.

Restricted input sets. Again the modeler indicates
the instance each node belongs to and whether or
not it is allowed to be an output node. The class
of each instance is indicated, as well as the nodes
each instance is allowed to reference (e.g. only Daisy,
Mathilda, Weather, Music and Food can be refer-
enced by the instances of MILK COW and MEAT

COW). This yields a restriction on the search space
compared to plain object oriented learning.

In practice the information gained from a domain ex-
pert will be a mixture of these information levels. This
can easily be accommodated in our method, as plain
object oriented learning can be seen as a case of re-
stricted input sets, where all possible nodes are allowed
to be referenced. This issue will not be discussed fur-
tiler in this paper, as the performance of such a mixture
will clearly be somewhere between the two information
levels.

Finally, the expert might also be able to specify ex-
actly what nodes are referenced by each instance, and
which nodes in the instances these are parents of. In
that case, investigation regarding references is not nec-
essary; all that remains is to identify the structure in-
side the classes.

Empirical results
In this section we will investigate the merits of the pro-
posed learning algorithm by employing it to discover

the OOBN representation of the STOCK domain. That
is, we generate data describing the domain and then use
it to learn an OOBN model, as outlined in the previous
section.

The goal of the empirical study is to evaluate whether
or not the proposed learning method generates a good
estimate of the unknown statistical distribution (as op-
posed to causal inference where the directions of the
arcs are of interest). Let f(x[8} be the unknown gold
standard distribution encoded by the STOCK class; x is a
configuration of the domain and O are the parameters.
~’N (xI~iN) will be used to denote the approximation 
f(xlO) based on N cases from the database.

Since an estimated model may have other links than
the gold standard model, the learned CPTs of ~N may
have other domains than the CPTs of 8. Hence a
global measure for the difference between the estimated
model and the gold standard model is required. In the
tests performed we have measured this difference by
using the empirical Kullback-Leibler (KL) divergence
between the estimated model and the gold standard
model. The calculations were performed in the under-
lying BNs of the two models. The KL divergence is
defined as

I(t, f) = E ~’N (xl~N) log 

x

This can be calculated without expanding the sum as
long as log[{~’N (x[(~N)/f(x[O}] factorizes over the cliques
of the junction tree (IT) representation of ~’N, see (Cow-
ell et al., 1999, Chapter 6). Care must be taken to en-
sure that the cliques of the estimated model are large
enough to capture all the dependences in the gold stan-
dard model. This can be achieved by compiling the es-
timated model such that if X and Y are in the same
clique in the JT-representation of the gold standard
model, then they are also in the same clique in the
IT-representation for the estimated model.

Note that if the causal interpretation of the generated
model had been of interest, the KL divergence would
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not have been a well suited divergence measure; a direct
measure of structural difference is more appropriate in
that case.

As described in the previous section we consider two
different levels of information available to the learning
algorithm; plain object oriented learning and learning
with restricted input sets. For comparison, we also em-
ployed a conventional learning algorithm.

The learning method was tested by randomly gen-
erating a database of size N from the gold standard
model, where 25% of the data was missing. The
database was used as input to the structural learning
algorithm. This was repeated a total of 100 times, with
N varying from 100 to 10.000. Each level of information
was used to generate models for each data set, and the
KL divergence was then calculated.

In our tests we used the SEM-algorithm with a
maximum of ten iterations (convergence was typically
reached in 4-5 iterations). In each iteration a simulated
annealing search was performed over all models consis-
tent with the current level of input. The parameters in
the simulated annealing were To = 25, 0¢ = 75, 13 = 75,
V = 0.75 and 5 = 100, see (Heckerman et al., 1994)
for notation. The empty graph was used as our prior
network, and it was given an equivalent sample size of
NI = 64.

I(I ’~ !~ v - . . .
" ~-~ ~k: ~IV~ ~ Plato object onented

’~’~ L~ ~V~ A Restricted input sets ........

,-I

’T4~Y’:~

I(XXI

Sizc ol(~tining sct

Figure 4: The KL divergence of the generated models vs.
the gold standard model. The different lines correspond
to the different levels of information available to the
learning algorithm.

The empirical results for the STOCK domain is given
in Figure 4. As can be expected, the quality of the re-
sult increases with the level of information available to
the learning algorithm. Note that by just enforcing the
OO assumption the quality of the learned network in-
creases by a factor of approximately 1.6 (by going from
conventional to plain object oriented learning). Sur-
prisingly the gain from restricting the input sets is only
marginal in the example (an improvement by a factor of
1.03). The restriction imposed in our test runs was that
a node in the output set of one instance could not be in
the input set of another. It seems that this knowledge
was easily discovered by the learning algorithm (even
for small data sets).
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Getting to know the correct reference nodes of each
instance improves the results from the restricted input
set learning by a factor of approximately 1.7. These
values are fairly constant as the size of the database in-
creases, thus the quality of the network approximation
increases uniformly; the algorithm proposed in this pa-
per is just as good at learning reference nodes as it is
at learning the other parts of the domain, even though
the calculations are more complex.

Conclusion
In this paper we have proposed a method for doing
structural learning in object oriented domains. The
learning algorithm is based on the OOBN framework
by (Bangs~ and Wuillemin, 2000), and has been imple-
mented using the Structural EM algorithm by (Fried-
man, 1998).

The proposed learning algorithm exploits an intuitive
way of expressing prior information in object oriented
domains, and it was shown to be more efficient than
conventional learning algorithms in this setting.
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