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Abstract

A promising way for solving "hard" problems with au-
tomated theorem provers is the lemmatization of the
original problem. The success of this method, how-
ever, depends crucially on the selection of a subset
of lemmata that a~’e likely to be useful. The paper
describes an algorithm implementing the selection of
lemma-knowledge by eliminating redundant lemmata
from set of potentiaUy usable clauses. A lemma a is
called redundaat with respect to a lemma set F, if
a can be generated with very few inferences from F.
ConRiets between redu.ndancies are resolvcd with an
importance criterion. The promising results of first ex-
periments are disct~ssed.

Keywords: theorem proving, lemmatization, redun-
dancy elimination

Introduction
When dealing wittl difficult problems, automated the.
orem provers (ATPs) are still inferior to skilled math-
ematicians. The lack of pertbrmance of ATPs in this
area of applications is caused by the overwhelming size
of the search space. Since ATPs typically perform a
(heuristically guided) brute-force search, they cannot
handle this situation very well. Humans, on the con-
trary, are looking very efficiently for a solution using
more selective methods that partition the problem into
easier subproblems. These facts suggest the utilization
of a selective search modularization in ATPs as well.
A simple way to follow this idea is the lemmatization
of the original problem P (Astrachan & Stickel 1992;
Draeger 1998a). The key idea is to replace some parts
of a traditional proof search with lemmata, which rep-
resent multiple inferences with a single intermediate re-
sult that can be repeatedly applied using a single infer-
ellce.

The resulting "simplified" proofs require fewer in-
fe.rences; hence they will typically offer the chance to
solve more problems within a reasonable time limit.
Since it is not suitable to add a full set of systemat-
ically generated lemmata to the given problem spec-
ification P (Draeger 1998; Iwanuma 1997; Schumann
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1994), a selected subset of lemma-knowledge has to be
used for supporting the brute-force search. The fun-
damental difficulty of this approach is the discrimi-
nation between useful and useless lemmata (Shiroma
1996). The theorem prover has to identify those lem-
mata which are likely to simplify the proof without
over-compensating this simplification by increasing the
branching rate. This problem is often called the utility
problem (Minton 1990). An approach for i.ts handling
was demonstrated successfully by the theorem prover
AI-SETHEO (Draeger 1998).

In order to solve a problem P, which is assumed to
be given as clause set including one or several queries;
AI-SETHEO first generates unit lemmata f by system-
atically enumerating consequences of the problem spec-
ification. The resulting lemmata are evaluated by a so-
called information measure I(f) = p(f) . r(f) (Draeger
1998a), which consists of a proof complexity measure
p(f) and a relevancy measure r(f) (Draeger & Wolf
1999; Wolf & Draeger 1999). A lemma f is con-
sidered as useful and transferred to the knowledge
base F, iff I(f) has a large value; thus both un-
interesting lemmata with a small relevance vah m as
well as trivial lemmata with a low proof con tplex-
ity are excluded (Draeger 1998). Then the standard
model-elimination prover SETHEO (Moser et al. 1997;
Goller et al. 1994) is applied to the formula P U 
resulting from adding F to the original problcm P.
The exclusion of seemingly useless lemmata from F re-
duces the administrative overhead of the search pro-
cess to such an extent, that the overall peribrmance of
the prover system is improved (Draeger 1998a). Many
more proofs are found with AI-SETHEO than with
the application of SETHEO on P without lemma sup-
port (Draeger & Wolf 1999; Wolf & Dracger 1999). In-
deed, the experiments have shown that this techuique
can be used to solve hard problems.

The nmst important element for the success of a con-
trolled lemmatization is an evaluation function which
selects only nontrivial lemmata, i.e. lemmata requir-
ing many inferences for their proof. In the case of the
information measure I(f), the proof complexity mea-
sure p(f) takes care of this part. However, the guar-
anteed non-triviality of f 6 F with respect to P does
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not exclude the case that f is trivial with respect to
P U F \ {.f}. In such a case, f is called redundant with
respect to F \ {f}. Despite being useful on its own, 
is not useful as element of F, because F and F \ {f}
represents the same state of knowledge. Experiments
have given overwhelming evidence that every useless
and hence superfluous lemma contained in a knowledge
base leads to a considerable diminution of the prover
performance. Thus, it is desirable to eliminate these re-
dundant lemmata in the knowledge base F. This paper
will discuss an algorithm performing such a redundancy
elimination.

This paper is organized as follows. The next section
describes the basic ideas of the redundancy elimination
algorithm. The third section contains some remarks
concerning the implementation, while the fourth section
discusses tile experimental results. The paper closes
with some additional remarks in the final section.

Redundancy elimination

As defined in the introduction, a lemma f is called re-
dundant with respect to F \ {f), if it can easily be de-
duced1 from Pt.J F \ {f). Such lemmata are useless, but
they increase the administrative overhead of the prover
considerably (Draeger 1998; 1998a). Hence, it is de-
sirable to eliminate these redundant lemmata (Mauldin
1984). The resulting compression of the knowledge base
rises the probability that the selected lemmata allow
a solution of the given problem P within the existing
practical resource constraints.

If we aim at the removal of as many redundant
lemmata as possible, a brute-force algorithm will give
the best results. However, this theoretically optimal
compression cannot be achieved in practice, due to
the super-exponential time complexity of the necessary
brute force approach. Such an algorithm would have to
test if a knowledge base F can be reconstructed from
F’ with a small effort for all possible F~ c F.

Clearly, such a brute-force approach is not tractable
in practice. In order to avoid a high computational com-
plexity, we pursue an heuristic approach based on an
iterative procedure instead. Whereas in the case of the
brute-force approach, the effect of a lemma deletion is
evident from the size of the compressed knowledge base
F and the effort required for the reconstruction of the
original knowledge base from F, now we must estimate
this effect with indirect measures. Other complications
are possible as well.

If the redundancy elimination is performed naively,
then the removal of lemma after lemma eventually does
not necessarily terminate with a plausible collection of
lemmata, but instead can result in a trivial (or even
empty) set. Consider the case of a sequence of lemmata
fl,..., f,,, where each of the lemmata is a simple deduc-
tion from the preceding ones. The last lemma f,L can

1Weather f is trivial or not, depends of course on the
specific calculus and search procedure.
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be recognized as redundant with respect to the remain-
ing set of lemmata and consequently can be removed
from F. During the next elimination step, however,
one of the fi, say fi~-l, can be recognized as redun-
dant itself. In this way the removal of lemmata pro-
ceeds. No single step has a significant effect on F, but
in the end the whole lemma set F can vanish. Such
an uncontrolled iterative deletion has to be avoided.
This is possible by the introduction of a flag set "u(f)
that forbids the removal of a lemma that is required
for reconstructing the original lemma set F0 from the
current knowledge base F. The flag set u(f) has to
assure that the lemmata contained in at least one of
the sets S},..., S}~ c F \ {f}, from which the easy de-
duction of f is possible, remains in F. Of" course, it
would be contra-productive to ma,’k the elements of all
S},..., S}~ as undeletable; this would not realize the full
potential of the redundancy elimination procedure, be-
cause much more lemmata than necessary are retained.
Instead, we will flag only the lemmata contained in one
of the S} against a future elimination. Formulated as
pseudo-code, the resulting algorithm has the following
preliminary form.

BEGIN
Construct proofs for f E F from P t2 F
Vf E F: u(f) := ;; mark all lemnmta as dcletable
F0 := F ;; secure original knowledge base

while
3f E F, f redundant, u(f) = 

do
F:=F\{f}
Let f be redundant w.r.t. {fl,---, f,,} C_ F\ {f}
u(fl) := 1,...,u(fn) := 1 ;; mark the 

;; as undeletable
done
END

First, all proofs for all f E F from PtA F that require
only very few inferences are systematically produced
and stored in a list L. All lemmata f E F are marked
as undeletable, i.e. u(f) is set to 0. The original knowl-
edge base F is secured in F0 := F. Now the elimination
loop begins. A redundant lemma f E F with u(f) = 
is eliminated from F; the redundancy is simply deter-
mined by a look-up in the proof list L.

Let F’ C F \ {f} denote one of the lemma sets.
with respect to which which the lemma f is redun-
dant; this means that a short proof for f exists that
uses only the clauses contained in P tA F~. The lem-
mata {fl,.-.,f,.} := F’ contained in F’ are marked
as undeletable, i.e. ’u(fl) := 1,...,u(f,~) := 1. They
must remain in the knowledge base, because otherwise
f would not necessarily be trivial with respect to the re-
sulting final knowledge base. The described elimination
is iterated as long as candidates for elimination exist.

In order to use the full potential of the redundancy
elimination, we have to evaluate the importance of the



lemmata that should be deleted. This is helpful es-
pecially in the case of so-called conflicts. Let us con-
sider the following situation. If an equational lemma
a = b is considered as useful and thus retained in the
knowledge base F, it is very probable that F contains
the lemma b = a as well. Due to the symmetry ax-
iom X -- Y ~ Y = X of the equality relation, these
two lemmata fl and f2 are trivial consequences of each
other, and hence are redundant with respect to each
other. In such cases, the redundancy elimination algo-
rithm has to decide, which one of fl or f2 should be
deleted, and which one should remain in the knowledge
base. This can be done with an importance evalua-
tion of the lemmata f 6 F. In the case of a conflict,,
tile lemma with higher importance should remain in
F. For evaluating the importance E(f) of f, the algo-
rithm determines the number n(f) of different proofs
found for f and the number a(f) of applications of f
in all proofs contained in the list L. A high value of
E(f) := (a(f) + 1)/(n(f) 1)characterizes an impor-
tant lemma f, because f is often applicable, but rarely
produced. This discrimination allows a suitable han-
dling of redundancy conflicts. The importance evalua-
tion is implemented in the following way.

¯ We consider lemmata fbr elimination in order of as-
cending importance, i.e. the lemma f that is consid-
ered for elimination in the next iteration should have
the lowest importance E(f) of all possible candidates.

¯ The importance criterion can also be used to de-
termine which lemmata should be marked as un-
deletable. As stated above, the algorithm selects a
lemma set S} = {fl,.-., f,~} and marks its elements
as undeletable. This assures the reconstructability of
the original knowledge base Fo from the current F.
Obviously, the performance of the elimination algo-
rithm can be increased by choosing a suitable S}. But

what is a suitable S}? Different options are possible.
In the present implementation of the elimination al-
gorithm, we select the lemma set S} with the highest
average importance ~-~les~ E(f)/iSif[¯

We get the new formulation of the algorithm as shown
below.

BEGIN
Construct prooi~ for f E F from P U F
Vf E F: u(f) := ;; mark all lemmata as deletable
Fo := F ;; secure original knowledge base
Vf ¯ F: compute E(f) ;; Get importance ranking
while

3f ¯ F, f redundant, u(f) = 
do

Let f be such a lemma with the lowest
importance E(f)

F :-- F \ {f}
Let f be redundant w.r.t.

S),...,S~ ~ C f \ {f}
Let {fl,-..,fn} := S} be the S}

with the highest average importance E(S~)
where E(S}):= ~-~6s} E(J)/IS}]

u(f,) := 1,...,u(fn):= 1 ;; mark fl,...,f~
;; as undeletable

done
END

At the end of this section, a remark about the per-
formance of the algorithm presented above should be
made. Though it selects the elimination candidates
carefully, the final result of the applied selection strat-
egy is not always optimal. The importance evaluation
E(f) is based on local information only, and does not
consider the effect of more than one step at a time.
Thus, it is possible that the elimination of redundant
lemmata rl,...,rn, considered as suitable based on
the available local data, turns out to be disadvanta-
geous from a global point of view. The deleted lent-
mata rl,..., rn could eventually have led to significant
eliminations later. The elimination of seemingly less
suitable lemmata r~,...,r~,~ at the beginning, on the
contrary, might lead to the preservation of the lem-
mata rl,...,rn, enabling the potentially more signif-
icant eliminations later. The heuristic approach tries
to avoid such disadvantageous situations as much as
possible, however, they cannot not be excluded totally.
This is the trade-off one has to accept in exchange fin’
the lower computational complexity of the iterative al-
gorithm as compared to the full brute-fbrce search.

Implementation

The proposed redundancy elimination algorithm was
implemented in the theorem prover AI-SETHEO, which
is based on the standard model elimination prover
SETHEO (Moser et al. 1997; Goller et al. 1994).
AI-SETHEO is a fully automated theorem proving sys-
tem that adds modularity through lemmatization to the
standard proof search. A description of the basic sys-
tem is given in (Draeger 1998).

One of the main modules is the goal-oriented brute-
force theorem prover SETHEO, which uses the model
elimination calculus (Loveland 1968; 1978) for first-
order clause logic as refined special tableau method.
The other two main modules of AI-SETHEO are the
lemma generator and the lemma selection procedure.
The lemmatization mechanism includes the redund~mcy
elimination algorithm as described in this paper and
works as follows.

At first, AI-SETHEO tries to solve the original prob-
lem P in a certain amount of time, using SETHEO’s
standard proof procedure. If this attempt is unsuc-
cessful, a set S of additional unit-lemmata is gener-
ated in a brute-force way by the DELTA-Iterator (Schu-
mann 1994), which is also based on SETHEO. Then
ALSETHEO evaluates the information measure I(f)
for all f ¯ S. A lemma f considered as potentially use-
ful is transferred to the knowledge base F. Now, the
redundancy elimination algorithm is applied to F. For
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Domain # Hard SETHEO AI-S. AI-S.
Problems -RE +RE

BOO 52 5 1 21
CAT 29 2 15 25
COL 68 11 10 31
FLD 188 8 13 27
GEO 103 6 19 48
GRP 249 13 24 48
HEN 35 1 9 34
LAT 34 0 4 7
LCL 181 10 41 78
LDA 22 0 6 14
NUM 285 2 10 14
PUZ 15 3 7 6
RNG 82 3 5 17
SET 735 23 35 100

Others 421 15 13 28
Total 2499 102 212 498

Table 1: Successes on TPTP domains

efficiency reasons this algorithm is scheduled as a two
stage process. In the first stage we use the saturating
theorem prover E (Schulz 1999) in filter mode to elim-
inate clauses that are directly subsumed by others. In
this mode, E just eliminates strictly redundant clauses,
i.e. clauses which can be trivially deduced from just one
parent clause. Such lemmata f represent redundancies
of F in a trivial sense; they would be eliminated by the
second stage representing the general redundancy elim-
ination algorithm as well. However, saturating theorem
provers are constructed to deal with large clause sets,
and hence the simple filter operation is performed much
more efficiently by E. This first stage typically reduces
the size of tim knowledge base considerably, making
the much more expensive general redundancy elimina-
tion algorithm described in the previous section much
cheaper to apply. Thus, the two stage approach reduces
the total running time of the elimination process com-
pared with a simple one stage process considerably.

The compressed knowledge base F produced by the
redundancy elimination algorithm is then appended to
the original formula P, and the whole proof process
performed by AI-SETHEO is repeated with the lemma-
tized fbrmula P U F instead of P. This iteration pro-
cess stops in the case of success or when a time limit is
reached. As the next section shows, many more proofs
are ibund in this way as with the brute-force application
of SETHEO on P (Draeger 1998; Draeger & Wolf 1999;
Wolf & Draeger 1999) alone.

Results

The I)erformance of the redundancy elimination algo-
rithm was tested on all hard problems contained in the
prol)lem collection TPTP (Sutcliffeet al. 1994), ver-
sion 2.2.1. Here, a problem is called hard, if standard
SETHEO can not solve it within 100 seconds. The re-
sults of the tests are shown in table 1.
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The entries in the first two columns give the theory
domain in the TPTP and the number of hard prob-
lems in this domain. The entries in the last three
columns give the performances of SETHEO and both
AI-SETHEO without (version presented at the confer-
ence AIMSA-98) and with (version presented at the
conference TABLEAUX-00 and described in this pa-
per) redundancy elimination for an overall time limit
of 1000 seconds. In the case of AI-SETHEO, the tim-
ing includes all operations necessary for lemma han-
dling. The experiments were carried out on Sun Ultra
10 workstations running at 300 MHz.

As can be seen, significantly more problems are
solved with redundancy elimination than without. In
the case of the ’hard’ problems a performance increase
by an average factor of 2.5 was reached for the ver-
sion with redundancy elimination; in several domains
like BOO, HEN, and RNG, the performance increase
reached up to a factor of 3 or more. This improvement
can be explained in the following way:

Due to the increased branching factor and resulting
explosion in the search space, the number of clauses
SETHEO can handle efficiently is limited. However,
in order to reach the same final size of the knowledge
base F, AI-SETHEO with redundancy elimination can
afford to start with a (much) larger initial set F 
a compensation for the expected size reduction. The
removal of unimportant lemmata from F then leads
to a higher diversity of the remaining elements in F
or, formulated in another way, into an enlargement of
the effective size of F. This effect raises the proba-
bility of finding a proof, because the higher diversity
of F enables the prover to pursue more solution ap-
proaches simultaneously during the direct search for a
proof. In other words, the larger effective size of F
leads to a larger fault tolerance with respect to lemma
selection. This increased robustness against erroneous
lemma evaluations is an essential factor for the success
of the redundancy elimination algorithm. It explains
the larger number of successes for AI-SETHEO with
redundancy elimination. Unfortunately, the degree of
size reduction of the knowledge base F under the re-
dundancy elimination algorithm can not be estimated
in advance, because it is subject to strong variations.
The final result strongly depends on the given proof
problem. Hence we cannot give typical numbers for
this parameter.

The redundancy elimination leads to other positive
effects as well. Very often, many iteration steps of the
proof procedure described in the implementation sec-
tion are necessary until a proof for the given problem is
found. In order to avoid an explosion of the size of the
knowledge base, comparatively strong selection criteria
for the lemmata have to be chosen. This can lead to
a distinct bias in the remaining lemma knowledge. In
effect, the search for useful new lemmata can converge
prematurely, thus preventing the discovery of knowl-
edge essential for the solution of a given problem. The
higher diversity of the lemma knowledge resulting from



the larger original size of the lemma set in the presence
of redundancy elimination helps to avoid such a pre-
mature convergence. Thus, the proof search can reach
solutions deeper in the search space than before.

Unfortunately, redundancy elimination is not always
advantageous. It prefers the most general version of
a lemma, which sometimes results in an unnecessarily
large search space compared with a lemma specifically
instantiated for the given problem. Hence it is possi-
ble, that in a few cases the search space is enlarged
rather than reduced by the application of the redun-
dancy elimination algorithm. Indeed, some solutions
found by AI-SETHEO without redundancy elimination
are lost in this way. Typical examples for this effect
can be found in the puzzle domain PUZ of the TPTP
library. For some problems contained in PUZ it is pos-
sible to construct lemmata which subsume more than
1000 other lemmata. In other domains, the situation is
not so clear, but the evidence still pointing in the same
direction (Draeger 2000).

Another mechanism also plays a role in limiting the
potential performance increase. Some versions of the
relevance measure component r(f) of the information
measure I(f) = p(f) ¯ r(f) favour lemmata f which
have a low syntactic complexity. One can argue in the
foUowing way (Draeger & Wolf 1999): The proof of 
problem (if there is one) is finite; hence the number 
useflfl lenlmata is finite, too. On the other hand, the
total number of lemmata which are valid in the under-
lying theory is typically not finite, or at least exceeds
the number of useful lemmata by far. This means that
the syntactic complexity of an arbitrary lemma on the
average is much larger than the syntactic complexity of
a useful lemnla. Ttmrefbre limiting the syntactic com-
plexity of a selected lenlma will raise the probability
that this lemma is usefnl for the construction of the
actual proof. In respect to the redundancy elimination
we have to note that many specifically instantiated lem-
nmta are already eliminated during the lemma selection
procedure, because they have a larger syntactical size
than the corresponding general formulation 2. Hence,
the pref’erence for syntactically simple lemmata in AI-
SETHEO without redundancy elimination to a large
degree f~vours those lemmata f which would be pre-
ferred by the redundancy elimination algorithm, too.

Outlook

The prosl)ects of the redundancy elimination approach
with respect to possible additional applications of the-
orem provers in the future are discussed in (Draeger
2000). All experiments carried out so tar confirm the
overall tendency that a better discrimination between
useful and useless lemmata leads to a smMler knowl-
edge base, and consequently improves the performance
of the ttmorern prover. However, the full potential of

2It is assumed here that the syntactical size of a lemma
f is measured as the number of function, constant, and vari-
able symbols contained in f.

controlled lemmatization has yet to be discovered.
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