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Abstract

Non binary constraints have recently been studied quite ex-
tensively since they represent real life problems very natu-
rally. Specifically, extensions to binary arc consistency into
generalised arc consistency (GAC), and forward checking
that incorporates a limited amount of GAC have been pro-
posed, to handle non-binary constraints directly. Enforc-
ing arc consistency on the dual encoding has been shown
to strictly dominate enforcing GAC on the primal encoding.
More recently, modifications to dual arc consistency have ex-
tended these results to dual encodings that are based on the
construction of compact constraint coverings, that retain the
completeness of the encodings, while using a fraction of the
space. In this paper we present results that combine the en-
forcement of arc consistency in these covering based dual en-
codings, with performing forward checking based search in
the primal encoding. We demonstrate how this new scheme
can be shown to strictly dominate standard non-binary for-
ward checking, while being able to efficiently enforce ex-
tremely high levels of consistency.

Introduction
Many industrial applications can be easily represented as
CSPs and solved using algorithms that have been designed
for general constraint satisfaction. Constraint satisfaction
problems have been successfully deployed in design, diag-
nosis, scheduling, planning, timetabling, temporal reasoning
and other optimisation problems.

While being quite prevalent in terms of real life problems,
constraint satisfaction has also been shown to be very hard in
general. Recently, it has become clear that non-binary res-
olution techniques are necessary, and a lot of research has
gone into the development of techniques that can directly
handle non-binary constraints. On one hand, many exten-
sions to existing binary constraint satisfaction algorithms
have been proposed that directly deal with the non-binary
constraints (Bessi~re et al. ! 999). The other choice is to per-
form a structural transformation of the representation of the
problem, so that the resulting problem is a binary CSP ex-
cept that now the original constraints which were non-binary
are replaced by binary compatibility constraints between re-
lations. This paper presents a method of combining the two
approaches.

*Work done while at the University of Regina.

A lot of recent work has been concerned with compar-
ing different levels of local consistency enforceable in the
non-binary representation with the dual representation. It
has been seen that the dual encoding can often enforce high
levels of consistency when compared to the primal represen-
tations (Bacchus & van Beek 1998; Stergiou & Walsh 1999).
In some cases the space complexity of the dual encodings is
prohibitive and this is sometimes a drawback when trying
to use these encodings. On the other hand it is well known
that methods that enforce high levels of consistency during
search can often solve large classes of problems efficiently
and scale well (Forward checking (FC)/Maintaining arc con-
sistency (MAC)). More recently (Nagarajan et al. 2000),
modifications to the standard dual encoding have been pro-
posed, using constraint coverings, that can compactly repre-
sent the given CSP using an equivalent dual encoding that
contains all the original solutions to the CSP. It has also
been shown that enforcing arc consistency in these con-
straint covering based encodings strictly dominates enforce-
ment of GAC on the primal non-binary encoding. In this
paper we combine the covering encoding based techniques
with the non-binary forward checking algorithms based on
the primal encodings, to provide an efficient way to solve
general CSPs. This technique allows us to obtain the bene-
fit of the high level of consistency enforced in the covering
based dual encodings, while retaining the implementational
and computational efficiency of search in the primal encod-
ing. Many of the successful search based techniques us-
ing the primal encoding for arbitrary constraint satisfaction
problems, owe their success to the various branching heuris-
tics that are available (e.g. unit propagation, minimum re-
maining values). Many algorithms using the dual encoding
have limited branching capabilities because of their struc-
ture (Walsh 2000). This paper attempts to provide a plat-
form to overcome this limitation of dual encodings, while
still inheriting the advantages of the primal algorithms.

Background
In this section we present some preliminary definitions and
background information.

Definition 1 A constraint Ci on an ordered set of variables
Vi = (vil , . . . , vi~ ) C V, is defined as a predicate on these
variables, Si C_ D(vil ) x ... x D(vik ). The set of subsets
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{1,~,..., VM} on which constraints are specified is called
the scheme of N. The number of variables in a constraint
is called the arity of the constraint. A constraint network in
which each constraint is of arity 2 is called a binary con-
straint network, and the problem that it represents is called
a binary CSP.

Definition 2 Given a constraint Ci on variables Vi the set
Si is a subset of the Cartesian product D(vil ) x . . . x D(vi~ 
that specifies the set of allowable combinations of values for
the variables vil x ... x vik. An element ti,a E Si is a tuple
on Vi.

Definition 3 Given a binary CSP, the primal constraint
graph associated with it is a labeled constraint graph,
whereN=V, (vi, vj) E Aiff3C 0 E C I V/j = {vi,vj}.
Also the label on arc (vi,vj) is Cij. An encoding of 
CSP using a primal constraint graph is called a primal en-
coding.

Definition 4 Given an arbitrary CSP, the dual constraint
graph associated with it is a labeled graph, where N=C,
(Ci,Cj) .4iff ],~ n}~~ 0.Also the l abelon arc(Ci,Ci)
is le~ M Vj. An encoding of a CSP using the dual constraint
graph is called a dual encodin~

Intuitively INl=lVI, and IAl=tCl, and an arc a E A that
connects two variables connected by constraint c, is labeled
by the definition of c. This representation is good for bi-
nary CSPs but is not as useful for general CSPs. The primal
graph for higher order CSPs is a hypergraph. The dual graph
constraint network can be solved by techniques that are ap-
plicable to binary networks by considering the constraints as
the variables and tuples that instantiate them as the domains.

Definition 5 lf Vi and ~ are sets of variables, let Si be
an instantiation of the variables in Vi. Si[]/3] is the tuple
consisting of only the components of Vi that correspond to
the variables in l.’~. This is also called the projection of
tuple Si on the variables in r~.

We say that an instantiation tx,a on the variables in ~’~ is
consistent with respect to a constraint network N, iff for all
l,~ in the scheme of N such that ~ C Vx, tx,a[Vi] E Si. If
we enumerate all consistent instantiations of variables in ~’.’,~,
we get a set of all solutions of the subnetwork defined by Vx.

Definition 6 Two constraints Ci, Cj E C are consistent/f
either Ci and Cj are not connected, or the induced con-
straints of Ci and Cj on Vi M Vj can be satisfied simultane-
ously by at least one instantiation of the variables in Vi n ~.

Clearly, if there exist Ci, Cj E C such that Ci and Cj are
not consistent, then there is no solution to the given problem.

Non binary constraint satisfaction
Arc consistency is a form of consistency defined for binary
constraints defined using the notion of support and viabil-
ity (Bessi~re & Cordier 1993).

Definition 7 Given a constraint Cij, the value b in D j, is
called a support for value a in Dj, if the pair (a, b) E Sij.
A value a for a variable i is viable iff for every variable
j such that a constraint Cij exists, a has a support in Dj.

The domain D of a constraint network, is arc consistent if
for every variable i in the network, all the values in di are
viable.

Intuitively, arc consistency for binary CSPs checks the
consistency of labels for each pair of nodes linked by a bi-
nary constraint and removes the labels that cannot satisfy
this local condition. Arc consistency is based on the notion
of support. If we are considering value a E Di for variable
i, as long as value a has a minimum of support from the la-
bels at each of the other nodes (variables) j (j not equal 
i), a is considered a viable label for i. But once there exists
a node at which no remaining label satisfies the required re-
lation with a, the a can be eliminated as a possible label for
i.

The definition of AC as described earlier is not directly
applicable to non-binary constraints. Arc consistency is ex-
tended for non-binary constraints as generalised arc consis-
tency (GAC). A non-binary CSP is GAC iff for any vari-
able in a constraint and a value that is assigned to it there
exist compatible values for all other variables in the con-
straint (Mohr & Masini 1988).

Definition 8 A tuple t on (vi~,...,vi~) is valid iff t E
D(vi~) x ... x D(viq). A CSP is said to generalised
arc consistent (GAC) ifVvi E V, Vvali E D(vi),VCj 
C, 3t E Sj such that t is valid and t[vi] = vali.

This definition is valid for both binary and non-binary
constraints. A value a E Di, is consistent with a constraint
C,,~, iff either vi ~[ V,n or 3 a tuple t E Sin, such that
t[vi] = a. A constraint C,n is generalised arc consistent
iff Vv~ E Vm, Di ~ ~, and Va E Di, a is consistent with
Cm.

Given the success of FC and MAC at solving a large
number of varied CSPs, the generalisations of FC for non-
binary constraints were studied in (Bessi~re et al. 1999).
While generalising the binary FC algorithm, several gen-
eralisations are possible while the MAC algorithm allows
only one generalisation. Binary forward checking guaran-
tees at each node that there is no future node with values in
its domain that is inconsistent with some past node. The set
of constraints involving past and future variables is used to
enforce AC at each level in the algorithm. When all con-
straints are binary, there is only one option for that set of
constraints, i.e., constraints involving one past variable with
one future variable. But when constraints are non-binary
there are many alternatives, since one has to deal with par-
tially instantiated constraints.

All these generalisations collapse to the standard version
in the case where all constraints are binary. The results in
that study can be summarized as follows. NFC5 > NFC3 >
NFC2, NFC5 > NFC4 > NFC2, NFC2 > NFC1 > NFC0,
NFC3 --~ NFC4. The NFC5 algorithm, after assigning the
current variable, makes the set of constraints involving at
least one past variable and at least one future variable GAC.
An algorithm FC+ that was presented in (Bacchus & van
Beck 1998) to operate on the hidden variable encoding, has
also been shown to be equivalent to NFC1.

Given a dual encoding of a non-binary CSP, one can
define arc consistency in terms of the constraints in the
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CSP representing dual variables and the tuples in the var-
ious constraints, representing values to each of these dual
variables. This form of local consistency has been defined
for non binary CSPs known as pair-wise consistency. Pair-
wise consistency was originally introduced in databases, and
is also called dual arc consistency.

Definition 9 Given a CSP, iffVCi, Cj, Si[V U ~,~]=Sj [~,~ U
Vj] and VSi, Si # 0, this CSP is said to be pair-wise con-
sistent

Generalised dual arc consistency

If a binary CSP is arc consistent then there is always a con-
sistent instantiation to any pair of variables. But in a gen-
eral (non-binary) CSP pair-wise consistency does not guar-
antee a consistent instantiation to the variables involved in
every pair of constraints. This is because a consistent in-
stantiation to a pair of constraints must satisfy both the con-
straints in question and also all constraints that are posed
on all the variables involved. Although pair-wise consis-
tency guarantees that the common variables between con-
straints are assigned consistent values, the other constraints
on the variables are not necessarily satisfied. In (Pang ! 998)
this insight regarding pair-wise consistency led to the defi-
nition of o J-consistency. Enforcing w-consistency removes
tuples from constraints that cannot participate in any solu-
tion. In (Nagarajan et al. 2000) this was generalised to gen-
eralised dual arc consistency)

Generalised dual arc consistency (GDAC) is also defined
on the dual encoding, and is an extension of pair wise con-
sistency that takes into account projections of constraint re-
lations on subsets of variables while enumerating supports
for the tuples.

Definition 10 Given two constraints Ci and Cj, the tuple
tj,b E Sj is called a generalised dual arc support for tu-
pie ti,a E Si, if ti,a[Vi fq Vj]= tj,b[~’~ n ~] and VCk E
Cl(Vk n (vi o Vj)) # ~, (ti,a t~ tj,b)[Vk] E Sk. a 
ti,a in a constraint Ci is generalised dual arc viable iff for
every constraint Cj, tuple ti,a has generalised dual arc sup-
port in Cj. A constraint network is generalised dual arc
consistent, iff for every constraint Ci, Si # 0 and all the
tuples in Si are generalised dual arc viable.

In addition to verifying that all the pairs of tuples (ti,a
and tj,b) in the constraints are pair-wise compatible, gener-
alised dual arc consistency also verifies that all constraints
that share variables with ti,a [~ tj,b are also compatible with
them.

Analysis

An arc consistency algorithm removes all arc inconsistent
values from the domains of the variables of the encoding.
Constraint propagation (as performed by an arc consistency
algorithms) inters no-goods in both the primal and the dual
domains.

To theoretically compare the amount of pruning achieved
by enforcing one form of arc consistency on a CSP with

1GDAC was called covering arc consistency.

3S2 FLAIRS-2001

other forms of arc consistency, Stergiou and Walsh (Ster-
giou & Walsh 1999) define a scheme to compare the vari-
ous no-goods derived in the different encodings. Constraint
propagation in the dual might infer no-goods involving dual
variables and these cannot be directly compared with the no-
goods inferred in the original problem using generalised arc
consistency. But, one can translate the no-goods derived in
the dual into no-goods involving the original variables and
values, i.e., If constraint propagation in the dual encoding
removes all tuples from a dual variable that assign a value
vali, to a variable vi, we can derive a single no-good that
removes vali from the domain of vi in the original problem.
Hence one can compare the no-goods in the original non-
binary problem using arc consistency, with no-goods that
can be derived from the dual arc inconsistent tuples.

In (Stergiou & Walsh 1999) enforcing arc consistency
in the two binary encodings for non-binary CSPs, the dual
encoding and the hidden variable encoding are compared to
GAC. The following theorems are proven in (Stergiou 
Waish 1999).

Theorem 1 Enforcing AC on the hidden variable encoding
is equivalent to enforcing GAC on the variables in the orig-
inal problem.

Theorem 2 Enforcing AC on the dual encoding is strictly
stronger than enforcing GAC on the original problem.

Theorem 3 Enforcing AC on the dual encoding is strictly
stronger than enforcing AC on the hidden variable encoding.

The above results indicate that enforcing AC in the dual
derives more no-goods than enforcing GAC or AC on the
hidden encoding. These results were extended in (Nagarajan
et al. 2000) to compare GDAC to GAC and PWC.

Theorem4 Enforcing GDAC on the dual encoding is
strictly stronger than enforcing GAC on the original prob-
lem.

Theorem5 Enforcing GDAC on the dual encoding is
strictly stronger than enforcing pair-wise consistency on the
dual encoding.

Theorem 6 Enforcing GDAC on the dual encoding is
strictly stronger than enforcing AC on the hidden variable
encoding.

Covering based dual encodings
Intuitively, a tuple, ti,a, is consistent if it satisfies all the con-
straints whose variables are completely instantiated by ti,a.
A complete solution is a consistent instantiation of all the
variables. The goal of CSP solving algorithms is to find one
(or all) consistent extensions on n variables. Given the set
of all constraints in the CSP, a special subset of constraints
called a constraint cover can be defined as follows.

Definitionll Let Ccover = {C1,C2,...,Cm}. Also
C~over C C. Each Ci E Ccover is given as (Vi, S~), where
I’: C V. Ccov~ covers V" "lf~ Ui=I Vi=V. Ccover is a con-

straint cover of V. As well, Ccov~r is a minimal constraint
cover of V if it is a constraint cover of V and no proper sub-
set of Ccover is a constraint cover of V.



Given a constraint cover, if one tuple is selected from each
constraint in the cover, the relational join of these ICco~,erl
tuples is a tuple on n variables. It can easily be shown that
the covering based encoding, even though it includes only
a subset of all the constraints, still contains all the solutions
to the original CSP. Any method that enforces consistency
on this covering based encoding (e.g. GDAC or w con-
sistency or forward checking that enforces these consisten-
cies) is both sound and complete. Given a constraint cover,
Cco ver = {C1,C2,...,Cm} if m > IvI, 3ci ~ Ccoo~
such that Ccover-Ci is still a constraint cover. Although the
size of a minimal constraint cover is upper bounded by IV[,
in practice in CSPs of higher arities, this number is even less.

We now re-define GDAC in terms of the covering based
dual encoding. Instead of searching for support for values
in the domains of the dual variables for every pair of values,
the arc consistency algorithm w.r.t, a covering only searches
for support for values in dual variables that are actually in
the constraint covering.

Definition 12 Consider a covering based dual encoding of
a CSP with Ccove,. = {Cl, C2,..., Cm}. Given two con-
straints Ci, Cj E Ccow.r, the tuple tj,b E Sj is called a gen-
eralised dual arc support for tuple t i,a E Si w.r.t. Ccover, if
t,,,[~,5 nl~]=tj,b[l.~nI,5] andVC~ e {C-{C~,C~}}, (t,.,
tj,b)[l/’ij n |,z] E S.,[Vij M V]. A tuple ti.a E G E Cco,er
is viable ill for eve~. constraint Cj E Ccover, tuple ti,a has
generalised dual arc support in Cj w.rt. C~.o,.,e~. A con-
straint network is generalised dual arc consistent (GDAC)
w.rt. a covering Ccover, ifVCi E Cco~.er, all the tuples in Si
are viable.

Theorem 7 Achieving GDAC on the constraint covering
based dual encoding is strictly stronger than achieving
GAC on the original problem.

Proof Assume that enforcing GAC on the original encod-
ing removes a value vali from the domain of variable vi.
This implies that there exists some constraint Ci that men-
tions variable vi, and the assignment of vali to vi cannot be
extended to a consistent assignment to the rest of the vari-
ables in Ci. In the covering based dual encoding we con-
struct a constraint cover. Either the cover contains the pre-
viously mentioned constraint Ci, or Ci G {C-C~o,.~}. If
Ci E Cco~,~,, then we can derive the no-good that removes
vail from vi (since no tuple in Ci assigns val.i to vi). Oth-
erwise, if Ci q[ C~o,e~, then there is some other constraint
Cj E Ccow~ that mentions vi (since C~o,,~r must cover all
variables). If Cj contains no tuple that assigns vali to vi,
then we can derive the same no-good. If Cj contains some
tuples that assign vali to vi, then these tuples will all be
discarded when a consistent extension is verified against the
constraint projection, of C~ (since Ci E C-Cco~,~r). Hence
we can derive the no-good that val~ cannot be assigned to
vi. To show strictness we can consider the example given
in Figure 1. Enforcing GDAC on the covering based dual
encoding, can derive more no-goods than enforcing GAC on
the original problem. []

In fact it is possible to show that enforcing pair wise con-
sistency on the standard dual encoding is incomparable with
enforcing GDAC w.r.t an arbitrary constraint cover. But for

special covers it is easy to show how GDAC can still enforce
high levels of consistency.

Definition 13 Given a CSP, a set of constraints Ccove~ C_ C
is called an i-cover iff Cco,~r is a covering, and VCi, Cj f[
Ccover, 3Cp, Cq G Ccover, such that (Vi n Vj) c (Vp 
Vq). Again, a cover C~o,,e~ is called a minimal i-cover if no
subset of Ccover is an i-cover

Theorem 8 If Ccow~ is an i-cover, GDAC on the covering
based dual encoding w.r.t. Ccover prunes at least as much
as pair-wise consistency on the standard dual encoding.

Proof If it is the case that VCi, Cj ¢. Ccover if 3Cp, Cq E
Copy,,., ($~ Iq ~’~) _C (1,~ O l,q), then GDAC .w.r.t. Ceove~
derives all pair-wise inconsistent tuples that AC on the dual
encoding would derive. (This is because all sets of com-
mon variables between pairs of constraints ¢ Ccover are sub-
sumed by either the ~ of two other constraints in Ceo~er or
by the projection of that t~ onto the constraints in C~ove~).
Hence this is precisely the condition when GDAC w.r.t, a
cover is no worse than dual AC. []

Example

Consider a simple example with 3 constraints, and 4 vari-
ables given in figure 1. Enforcing GAC on this non-binary
CSP will remove no values since it is already GAC.

C 17,,$: C14: C2.J,k VI V’ V..~ V4
VI V2 V.:I VI V4 V2 VJ V4 --mr’---m-.-.-.-,,r-.-Ii,
z---a- -J¢- -Ir.-.-c I a a b b h b

- 11- .¯ - -b -b - -a" II a b - -L-.. - ~-.-.- -¢---c -
b b b b b b b b
~-- b--e- -e--st b b e

- v--¢ ̄  -m-- "c - -b ¢ ¢ a
- ~’" -c - b- -¢---t" c ¢ b

A

J
Pl’oj~tJon

Figure !: GDAC w.r.t, a cover

Consider the same example enforcing GDAC. From the
set of given constraints, C={Ct23, Cz34, C14 }, we can con-
struct a minimal constraint covering, by considering any two
of the three constraints. From definition 12, the GDAC algo-
rithm would enforce pair-wise consistency between pairs of
constraints in a covering, while ensuring that the relational
join of the pairs of constraints is consistent with the rest of
the constraints in C. The only dual domains that are pruned
of values are the constraints in the covering. In figure 1, a
constraint cover is constructed as Ccover={C123, C14 }. The
pruning achieved by enforcing GDAC is given in the figure.
The derived no-goods when translated back to the domains
of the variables in the original problem, reduce the domains
to singleton domains, and we can now solve the problem in
a backtrack free manner. Although we enforce GDAC only
on the constraints in the covering, and prune only the do-
mains of the constraints in the cover, we are able to enforce
a level consistency that is higher than enforcing dual arc con-
sistency.
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From the dual to the primal

As seen in the example above and from the theoretical re-
suits given earlier, effective pruning can be achieved by en-
forcing high levels of consistency in the dual encoding. In
fact by using the covering based encoding we can enforce
a level of consistency that is strictly higher than enforcing
GAC, and that is in many cases higher than PWC too while
doing much less work. Given this insight it is interesting to
consider using this pruning to effectively remove values that
cannot participate in any solution, before search, and then
proceed to search for a solution in the modified domains of
the variables using standard non-binary forward checking.

Results

In this section we present some empirical results to support
the ideas presented in this paper. We generated 500 ran-
dom CSPs using a random non-binary CSP generator that we
built. The CSPs were generated with 25 variables, 60 con-
straints, arity 4 and domain size 3. We generated problems
at 5 different tightness values, between 0.3 and 0.7 in steps
of 0.1. For each tightness value, we generated 100 prob-
lems and reported the results averaged over these 100 prob-
lems. We report 3 different tables that contain the number of
nodes visited, number of constraint checks performed and
the percentage of values removed by arc consistency pre-
processing. We implemented NFC 1 and also weighted con-
straint covering algorithms, and enforced GDAC on them.
We also report the results by translating the no-goods from
the dual domains after pre-processing to the original do-
mains, and then executing NFC1 using the resulting variable
domains. As seen in the tables, the covering based algo-

FC GDAOv GDAC-FC GDACw.FC
11.30 5127.6 78.3 5127.6 5127.6
0.4(I 35791.3 1346 1698.3 18651.1
0.50 31511.1 77.1 0 65.5
(I.6(I 0 0 11 0
0.70 11 0 0 0

Table 1: Nodes Visited with PP:(25, 3, 4, 60)

FC GDAO~ GDAC-FC GDACw-FC
0.311 424888 156626 3.52039c+06 517087
0.40 4.40499e+06 1,54o35e-14162.24581e-1416 2.2597 It-HI6
0.50 489456 74249.5 145103 46137.8
0.60 415.4 636.8 2321A 636.8
0.70 2165 194 687 194

Table 2: CCks with PP:(25, 3, 4, 60)

Pt FC GDA~ GDAC-FC GDACw-FC
0.30 0 1.75505 0 0
0.40 5.8 21.9237 26.2074 10.1
0.50 10.6 61.0904 16,7215 49.5
0.6O 20.5 6.25 2,08791 6.25
0.711 32 6.69643 1.67984 6.69643

Table 3: % Vals Removed with PP:(25, 3, 4, 60)

rithms perform very well when compared to standard NFCI.
Also when we consider the algorithms using the translated
no-goods, the pruning of the dual algorithms allows us to
reduce the search space visited by the NFCI algorithm even
further.

Conclusions
In this paper we have presented some ideas to combine lo-
cal consistency enforcement in the dual encoding for non-
binary CSPs with search using non-binary FC in the primal
encoding. We enforce high levels of consistency in the pre-
processing phase, and prune many inconsistent values. It
still remains to be seen whether the algorithms can be com-
bined in a tighter fashion so that the high level dual encoding
based consistencies can be maintained while searching in the
primal graph.
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