
User-Agent Interactions in Mixed-Initiative Learning

Dorin Marcu, Mihai Boicu, Gheorghe Tecuci
Learning Agents Laboratory, Department of Computer Science, MSN 4A5, George Mason University, Fairfax, VA 22030

{dmarcu, mboicu, tecuei }@gmu.edu

Abstract
Mixed-initiative learning integrates complementary human
and automated reasoning, taking advantage of their
respective reasoning styles and computational strengths in
order to solve complex learning problems. Mixed-initiative
learning is at the basis of the Disciple approach for
developing intelligent agents where a subject matter expert
teaches an agent how to perform complex problem solving
tasks and the agent learns from the expert, building and
refining its knowledge base. Implementation of practical
mixed-initiative learning systems, such as those from the
Disciple family, requires advanced user-agent interactions to
facilitate user-agent communication, the distribution of tasks
between them, and the shift of initiative and control. This
paper discusses some of these user-agent interaction issues
in the context of the mixed-initiative rule learning method of
the most recent version of the Disciple system.

Introduction
Mixed-initiative learning integrates complementary human
and automated reasoning, taking advantage of their
respective reasoning styles and computational strengths in
order to solve complex learning problems. Although the
basic idea underling mixed-initiative learning seems very
simple, developing an effective mixed-initiative learning
method is actually a very complex research issue. It
requires the human and the automated agent to share
representations, to communicate naturally, to properly
divide their tasks and responsibilities, to be able to
coordinate their actions, to take the initiative and to release
the control.

We address the problem of mixed-initiative learning in
the context of developing tools for enabling a subject
matter expert who does not have knowledge engineering
experience to build knowledge bases and agents. This will
provide a solution to the well-known knowledge acquisition
bottleneck in the framework of the Disciple theory (Tecuci,
1998, Tecuci et al., 1999). The approach is to develop
powerful learning agent that can be taught directly by a
subject matter expert. The expert should be able to
communicate his or her expertise to the learning agent in a
very natural way, similar to how the expert would
communicate it to a human apprentice while solving
problems in cooperation. Through natural interactions, the
agent will be guided in learning complex problem solving
rules, and in extending and correcting its knowledge base.

Building the knowledge base of the agent is an example
of a problem that, by its very nature, requires a mixed-

Copyright © 2001, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

initiative solution. Indeed, neither the subject matter expert,
nor the learning agent can solve this problem
independently. While the subject matter expert has the
knowledge to be represented in the knowledge base, he is
not a knowledge engineer and cannot properly formalize it.
On the other hand, the learning agent obviously does not
have the knowledge to be represented, but it can
incorporate knowledge engineering methods to formalize
expert’s knowledge. The goal is then to divide the
responsibility between the expert and the agent for those
elements of knowledge engineering for which they have the
most knowledge and aptitude, such that together they form
a complete team for knowledge base development. As
mentioned above, this will require the coordination of the
interaction between the expert and the agent, and the shift
of initiative and control during knowledge acquisition and
learning.

In this paper we are discussing some of the user-agent
interaction issues involved in mixed-initiative learning,
using as an example the rule learning method of the latest
system from the Disciple family that is currently under
development in the Learning Agents Laboratory
(http://lalab.gmu.edu).

Agent Building Methodology

The current Disciple agent shell consists of an integrated
set of knowledge acquisition, learning and problem solving
modules for a generic knowledge base structured into two
main components: an ontology that defines the objects from
a specific application domain, and a set of problem solving
rules expressed with these objects. The problem solving
approach of a Disciple agent is task reduction, where a task
to be accomplished by the agent is successively reduced to
simpler tasks until the initial task is reduced to a set of
elementary tasks that can be immediately performed.
Therefore, the rules from the knowledge base are task
reduction rules. The ontology consists of hierarchical
descriptions of objects and features, represented as frames,
according to the knowledge model of the Open Knowledge
Base Connectivity protocol (Chaudhri et al. 1998).

The process of building the knowledge base of a Disciple
agent includes three main phases: domain modeling,
ontology development, and agent teaching.

In the domain modeling phases the expert and the
knowledge engineer define, at a conceptual level, a model
of the application domain that will make explicit how the
expert performs his tasks, based on the task reduction
paradigm. They consider a set of specific tasks that
constitute a representative set for the tasks that the final
agent should be able to perform. Then, for each of these
tasks, they will represent the problem solving process as a

382 FLAIRS-2001

From: FLAIRS-01 Proceedings. Copyright © 2001, AAAI (www.aaai.org). All rights reserved.

sequence of task reductions (and, possibly, task
composition) steps. This process also produces an informal
specification of the objects needed to be represented into
the agent’s ontology (Bowman et al., 2000).

During the ontology development phase the knowledge
engineer and the expert import some of the object concepts
identified in the previous phase from existing repositories
of knowledge, and define the rest of them. This phase
results in an initial knowledge base that contains an
incomplete ontology but no rules (Boicu et al., 1999).

The third phase of agent development is a mixed-
initiative teaching and learning process, where the subject
matter expert teaches the agent how to perform its tasks in a
way that resembles how the expert would teach a human
apprentice when solving problems in cooperation. As a
result, the agent will learn problem solving rules from the
expert, and will also extend and update its ontology. Then
the developed agent can be used by a non-expert user, or it
could be an assistant to an expert.

Disciple has been applied in the High Performance
Knowledge Bases program supported by DARPA and
AFOSR (Cohen et al., 1998), to develop a knowledge-
based agent for solving the workaround challenge problem
(Jones, 1998). This workaround agent has to determine the
best plan of actions for a military unit to bypass or
reconstitute damage to a transportation infrastructure. For
instance, unit91010, located at sitel00, has to cross a river,
but the bridge over the river at site203 has been destroyed.
The generated plan may involve obtaining bridge building
and rubble clearing equipment from other units, bringing
them to the site of the bridge, preparing the area, and
installing a new bridge. The plan has to indicate a minimal
and expected time of completion, the resources needed, and
the transportation capacity of the new bridge.

In the following sections we discuss the user-agent
interactions occurring during the mixed-initiative learning

[m xs n-m UT_7~’B~_~_.E_]

ANSWER: " .
Fixed military bridge because

it has a high enough MLC-rating
end tbe gap length Is ~ 12.m

of workaround rules.

Mixed-initiative Rule Learning
The expert teaches the Disciple-workaround agent by
jointly developing workaround plans, as described in the
following. First, the expert formulates the workaround task
to be performed. Then Disciple tries to successively reduce
this task to simpler tasks by applying the task reduction
rules from its knowledge base. The expert has to analyze
each reduction proposed by the agent, deciding whether to
accept it or to reject it. In both cases the rule refiner is
invoked to either generalize or to specialize the rule that
generated the solution. If the agent was not able to propose
any solution or the proposed solution was rejected, then the
expert has to provide a solution. In this case the rule learner
is invoked to learn a new rule. This situation is illustrated in
Figure 1. The left hand side represents the reasoning
process of the expert:

The task to accomplish is:
Workaround destroyed bridge at sitelO0 over site203 by unit91010

What engineering technique could be used?
Fixed military bridge because it has a high enough MLC rating
and the gap length is only 12m

Therefore accomplish the task."
Workaround destroyed bridge at sltelO0 over site203 by unit91010 using
a fixed military bridge with minor preparation

As one can see, expert’s reasoning is represented in natural
language, at an abstract and qualitative level. The QUESTION
and its ANSWER provide an explanation of why the top task
in Figure 1 is reduced to the bottom task. While this
explanation is very natural to a human expert, a learning
agent cannot understand it. The explanation that would be
understood by the agent is represented in the upper right
part of Figure 1, and consists of various relations between

¯ .UNrr91010 MAX, WHEELED.MLC 20 t, [RY-BRIDGE MLC.RATING 70 f 2 ZO tI
0 MAX.TRACKED.MLC 40 t, |

WARY.BRIDGE M, LC-RATING 70 t 240 t [
SlTE203.HAS-WIDTH 12 m,

J

t

Figure 1: Teaching the Disciple agent.

MACHINE LEARNING 383

certain elements from the agent’s ontology.
The first explanation piece is:

UNIT91010 MAX-WHEELED-MLC 20 t,
FIXED-MILITARY-BRIDGE ML C-RA TING 70 t > 20 t

This explanation piece states, in Disciple’s formal
language, that the heaviest wheeled vehicles of unit91010
weigh 20 tons and this is less than the 70 tons that may be
supported by a fixed military bridge. The second
explanation piece expresses a similar thing with respect to
the tracked vehicles of unit91010. Collectively, these two
explanation pieces correspond to the expert’s explanation
that the fixed military bridge has a high enough MLC-
rating. The last explanation piece states that the width of
the river gap over which the fixed military bridge is to be
installed is within the range of this type of bridge. This
explanation corresponds to the expert’s explanation "the
gap length is only 12m". While an expert can understand
the meaning of these formal expressions, he cannot define
them because he is not a knowledge engineer. For one
thing, he would need to use the formal language of the
agent. But this would not be enough. He would also need to
know the names of the potentially many thousands of
concepts and features from the agent’s ontology.

While defining the formal explanations of this task
reduction step is beyond the individual capabilities of the
expert and the agent, it is not beyond their joint capabilities.
Finding these explanation pieces is a mixed-initiative
process of searching the agent’s ontology, an explanation
piece being a path of objects and relations in this ontology.
In essence, the agent will use analogical reasoning and help
from the expert to identify and propose a set of plausible
explanation pieces from which the expert will have to select
the correct ones.

One analogical reasoning heuristic is the following one:

1.Look for a rule Rk that reduces the current task (i.e.
’~Norkaround destroyed bridge at 701 over ?02 by ?03"), even
though this rule is not applicable in the current situation.

2. Extract the explanations Eg from the rule Rk.
3. Look for explanations of the current task reduction (i.e.

the task reduction in Figure 1) that are similar with Eg,
and propose them to the expert.

This heuristic is based on the observation that the
explanations of the alternative reductions of a task tend to
have similar structures. The same factors are considered,
but the relationships between them are different. For
instance, to workaround a destroyed bridge one could use a
fixed military bridge with minor preparations (as in Figure
1), or with gap reduction, or with slope reduction. In
particular situation, the decision of which of these
reductions to perform depends upon the specific
relationships between the dimensions of the bridge and the
dimensions of the river gap. If the agent has already learned
a rule corresponding to any of these reductions, then
learning the rules corresponding to the other reductions is
much simpler because the agent can propose explanations
by analogy with those of the learned rule.

Let us consider again Figure 1. To provide the solution
to the agent, the expert uses the Example Editor that is
already initialized with the task to be reduced. Then he has

to specify the question, the answer, and the subtask. Notice,
however, that the above heuristic relies only on the task to
be reduced. Therefore, the agent can start immediately to
search for plausible explanations, in parallel with the
completion of the example by the expert. Nevertheless, as
the completion of the example advances, the agent could
extract additional hints from the expert’s actions. For
instance, once the expert has specified the question and the
answer, the objects and the relations referred there (such as
fixed military bridge, MLC-rating, 12m) could be used as
searching hints. Indeed, they tell the agent that the
potentially useful explanations are those that contain these
elements. After the expert has completed the definition of
the example, the agent may initiate other analogical
reasoning heuristics that take into account the entire form
of the example (not just its top task). The expert could also
give explicit hints to the agent. A hint is a fragment of an
explanation, such as an object or a relationship between
two objects, or any other abstraction of the explanation.

From the task reduction example and its explanations
shown in Figure 1, the agent automatically generates the
general task reduction rule shown in Figure 2. The
generalization method is presented in (Tecuci, 1998). This
rule is a complex IF-THEN structure that specifies the
condition under which the task from the IF part can be
reduced to the tasks from the THEN part. Partially learned
rules, such as the one shown in Figure 2, do not contain
exact conditions, but plausible version spaces for these
conditions. Each such plausible version space is
represented by a plausible upper bound condition which, as
an approximation, is more general than the exact (but not
yet known) condition, and a plausible lower bound
condition which, as an approximation, is less general than
the exact condition. In addition to the main condition, the
learned rule also includes generalizations of the
explanations, and of the question and its answer, which
basically represent the same information at higher levels of
abstraction and formalization.

An important aspect of the interactions between the
expert and the agent, that was illustrated above, concerns
the exchange of information between them, in each
direction, in forms that the source can easily create and the
recipient can easily understand. There is a clear
complementariness between the expert and the agent with
respect to their language generation and understanding
capabilities. The expert can easily generate and understand
natural language. He can also understand quite easily
expressions in a formal language but he cannot generate
such expressions. On the contrary, the agent has very
limited natural language understanding capabilities, but its
generation capabilities, especially with respect to formal
expressions, are powerful. Our mixed-initiative approach
takes these different capabilities into account. For instance,
when the agent needs some information from the expert,
rather than asking the expert to provide it (which would be
difficult because it would require the expert to create a
sentence in agent’s formal language), the agent can
formulate the question and possible answers and ask the
expert to indicate the correct one. Or, when the agent
cannot hypothesize the correct answer, it could ask the
expert to only provide a hint and will use this hint to

384 FLAIRS-2O01

Rule: R$WDB-002
IF the task to accomplish is
Workaround destroyed bridge at ?O1 over ?O2 by ?03

Question: What engineering technique could be used?)

rAnswer: Fixed military bridge because # has a high ¯
~ enough ML C-rating and the gap length is only ?N4 m ,,

Explanations:
?03 MAX-WHEELED-MLC ?N1, ?04 MLC-RATING ?N2 >= ?N1
?03 MAX-TRACKED-MLC ?N3, ?04 MLC-RATING ?N2 >= ?N3
?02 HAS-WIDTH ?N4, ?04 MAX-GAP ?N5 >= ?N4

c-
O
"tOc-
O

Plausible Upper Bound Condition
?01 IS BRIDGE
?02 IS CROSS-SECTION

HAS-WIDTH ?N4
?03 IS MILITARY-UNIT

MAX-WHEELED-MLC ?N1
MAX-TRACKED-MLC ?N3

?04 IS FIXED-MILITARY-BRIDGE
ML C-RA TING ?N2
MAX-GAP ?N5

?N1 IS-IN [0.0 150.0]
?N2 IS-IN [0.0 150.0]

>= ?N1
>= ?N3

?N3 IS-IN [0.0 150.0]
?N4 IS-IN [0.0 100.0]
?N5 /S-IN [0.0 100.0]

>= ?N4

O
P
¯ ~ ?01
=E ?02

?03

?04

?N1
?N2

?N3
?N4
?N5

Plausible Lower Bound Condition
IS SITEIO0
IS SITE203
HAS-WIDTH ?N4
IS UNIT91010MAX-WHEELED-MLC ?N1

MAX- TRACKED-ML C ?N3
IS FIXED-MILITARY-BRIDGE
ML C-RA TING ?N2
MAX-GAP ?N5
IS-IN [20 20]
IS-IN [70 70]
>= ?N1
>= ?N3
IS-IN [40 40]
IS-IN [12 12]
IS-IN [1717]
>= ?N4

THEN accomplish the task
Workaround destroyed bridge at ?O1 over ?02 by ?03
using a ?04 with minor preparation

Figure 2: The learned rule.

hypothesize possible answers. Also, when the expert has to
communicate something to the agent, he can use a graphical
interface to point and click. For instance, he can give a hint

for an explanation by simply pointing to an object in the
current example.

In the following section we will discuss some of the
mechanisms that enable the type of user-agent interactions
illustrated above.

Formalization of User-Agent Interactions
We have defined a Mixed Initiative Description Language
to formally represent the algorithms to be executed through
mixed-initiative reasoning. This is a rule-based language
where each rule describes the execution of a higher level
task in terms of simpler subtasks, their preconditions, the
messages that could be exchanged between them, different
possible flows of execution of these tasks, their possible
results, and who has to execute them (the expert or the
agent, or both of them). Thus the tasks to be performed by
the expert and by the agent are described in terms of their
subtasks. This provides a useful similarity with the general
problem solving approach of Disciple.

For example, Figure 3 is a graphical representation of the
decomposition rule corresponding to the mixed-initiative
rule learning algorithm described in the previous section
and illustrated in Figure 1. The Learn_rule task is
decomposed into four subtasks: Define_example,
Explain_example, Generate_explanations and Create_rule.
The first two subtasks are non elementary, each of them
being decomposed by other rules into even simpler tasks,
some to be executed by the agent and some by the expert.
The last two subtasks are elementary agent tasks.

The rule also represents the control and the
communication flow between the component tasks. The
solid arrows represent the main execution flow. For
instance, the Define_example and the Generate_
explanations tasks are executed in parallel. Indeed, as
discussed in the previous section, the agent can start
immediately to look for explanations, based only on the top
task (i.e. the IF task) of the example. The dashed arrows
indicate the messages that could be exchanged by the tasks
during their execution. For instance, as the expert defines
the question and the answer part of the example, this
information is communicated to the Generate_explanations
task (through "Example_updated example"), guiding the
agent in filtering the generated explanations or in
generating new ones. The Define_example task ends with a
complete example. This is sent to the Explain_example task
that can now start its execution. The communication
between the Explain_example task and the
Generate_explanations task is also represented in the rule.
The Explain_example task can provide hints to the
Generate_explanations task, the Generate_explanations task
can propose a list of plausible explanations, and the
Explain_example task can indicate the selection of some of
these explanations by the expert. The Explain_example and
Generate_explanations tasks end when the expert is
satisfied with the generated explanations. This initiates the
Create_rule task where the agent generates the learned rule
and provides it as the result of the Learn_rule task. It is
important to stress that the rule in Figure 3 only indicates
which tasks can potentially be executed. In a given rule
learning situation only some of these tasks will actually be

MACHINE LEARNING38S

Cancel

Cancel

Cancel

Cancel

Exampledefined example

Example-explained examp/e explanations

Ontologyupdated element

Start

.. "’~~ Ontology-updated element

Example updated examp/e ~

Hintprovided hint

.p .po~

SSSS,S /

~’’~k Explenetion-selected exp/enat/on

I
!

¯ Explanations-proposed explanations-lilt

Rule-learned examp/e explanation rule
l Non elementary task

Elementary task

~t Agent task
Task interaction
Start I End message

- - t~ Send I Receive message
Rule learned examp/e explanation rule

Figure 3: Sample rule in the Mixed-Initiative Description Language.

executed. For instance, the user may cancel the definition
of the example, in which case the other tasks are no longer
executed and the Learn_rule task ends with the "Cancel"
result.

This representation allows for the description of subtle
interactions between various tasks. For instance, an
interesting indirect hint for explanation generation is given
by any ontology modification made by the expert during the
rule learning process. This will likely be related to some
object or feature that should appear in the explanation. As
indicated in the top right part of Figure 3, any ontology
modification by the expert will trigger a message to the
Generate_explanations task, specifying the updated
element.

As can be seen, this rule description language allows
breaking down complex tasks that need to be jointly
performed by the expert and by the agent, into simpler
subtasks, and to clearly divide the responsibility between
the expert and the agent for those of these tasks for which
they have the most aptitude. For instance, Define_example
falls mostly under the responsibility of the expert, but
Create_rule is entirely under the responsibility of the agent.
The rule expresses also the potential shift in initiative and
control. For instance, the agent takes the initiative of
looking for explanations even before the example has been
completely defined. This is important because explanation
generation is a computationally intensive process and the
example definition does not require significant resources.

The Task Agenda
The interpreter of the Mixed-Initiative Description

Language provides for a mixed-initiative control of task
execution. An important component of this interpreter is a
task agenda that displays all the tasks relevant to the user at

different levels of abstraction, providing an increasing
efficiency of interaction as the human expert becomes more
experienced in collaborating with the agent. The task
agenda will also highlight the tasks that are currently being
executed and those that can be scheduled for execution at
that time, to keep the expert informed with both the current
and the anticipated status of the execution. This task
execution framework allows the agent to reason about the
current tasks performed by the expert and to exhibit
proactive behavior by executing support tasks in advance,
in order to facilitate the initiation or completion of an
important expert task that will follow. There are three
complementary views of the task agenda: the
decomposition view, the execution view and the
continuation view. They will be briefly presented in the
following.

The Decomposition View
The decomposition view is illustrated in Figure 4. It shows
all the possible subtasks of a complex task, independent of

Learn rule

.....~1 Define example

......~ ~ Generate explanations

i"-"-’Et Explain example

i [.........El ~ Generate explanations

i [.......El& Define hint

[...... m& Define explanation

i !41-1Sele*’e*pl--a’io. I
i~ Create rule

Figure 4: The decomposition view of the task agenda.

S86 FLAIRS-2001

whether they are executed or not. The agent’s tasks are
prefixed by a computer icon and the expert’s tasks are
prefixed by an expert icon For example, the complex task
"Learn rule" is decomposed into four simpler subtasks,
"Define example", "Generate Explanations", "Explain
example" and "Create rule". The "Generate Explanations"
and "Create rule" tasks are performed by the agent. The
others are mixed-initiative tasks that are further
decomposed into simpler subtasks, which are either agent
tasks or expert tasks. Figure 4 also shows the
decomposition of the task "Explain example" into four
subtasks. The tasks that have already been executed are
shown in italics (e.g. "Define example"), those that are
currently in execution are shown in bold (e.g. "Generate
explanation") and those that require the expert’s input are
surrounded by a border line (e.g. "Select explanation"). The
"Generate explanations" task that appears as subtask of
"Learn rule" is the task that generates explanations during
the definition of the example. The "Generate explanations"
task that appears as subtask of "Explain example" is the
task that generates explanations after the example was
completely defined.

The Execution View
The dynamics of the task execution process is displayed in
the task execution view (see Figure 5). In this view the
tasks are structured in a hierarchy based on the
dependencies between them and the flow of control. A task
is completed when one of its children is completed - the
other children are just alternative options. For example, in
order to complete the task "Learn rule", the task "Define
example" was activated and completed, followed by
"Explain example", which requires the completion of the
task "Generate explanations". "Generate explanations"
waits for the completion of "Select explanation", which is
the task that currently requires the expert’s input. The
current execution chain is displayed in bold. In order to
complete the task "Explain example", the expert has several
alternatives, shown in Figure 5. He may define some hints,
triggering the "Define hint" task. He may manually define
explanations and therefore start the "Define explanation"
task. Or he may initiate the "Create rule" task by selecting
the "Complete rule learning" alternative.

The execution view is synchronized with the
decomposition view and it contains similar information but
focuses the expert on the task execution chain.

-~ Learn rule

....... I~ Define example

....... ~ Explain example

i-..-..-t~ ~ Generate explanations

li L._... m 3[Select ex p lanation I

: [---m,~ Define hint

[..~.-IB,~ Define explanation

],~ Complete rule learning

......... ~[, Complete rule learning

..... ,~1, Cancel rule learning

Figure 5: The execution view of the task agenda.

The Continuation View
The continuation view is the most helpful view for the user.
It displays all the possible ways to continue or complete the
current active task in either the decomposition or the
execution views. In Figure 6 the continuation view shows
all the possible continuations of the task "Select
explanation", which is the active task in both the
decomposition view (Figure 4) and the execution view
(Figure 5). After the expert selects an explanation the task
"Select explanation" is completed, and the expert may
define a new hint or a new explanation and therefore
starting the tasks "Define hint" or "Define explanation"
respectively, complete the rule learning process or cancel it
by initiating the corresponding tasks. The agent may also
start the "Generate explanations" task. Some of the options
displayed in the continuation view can also be found in the
interface associated with the task (for example completing
the rule learning task can be done by clicking the
"Complete" button in the interface or by selecting and
executing the "Complete rule learning" task from the
continuation view). However, others options are not
directly accessible from that interface (but are accessible
from a previous interface). We plan to transform this view
into a help wizard which, in addition to indicating the
possible task continuation options, will also provide an
explanation of each option and the expected effects on the
current state.

~Select explanation I

i
~. Define hint

iI~1 ~ Generate explanations

iIBm, Define explanation

~t]~ Complete rule learning

~ Cancel rule learning

Figure 6: The continuation view of the task agenda.

Conclusions
In this paper we have addressed some of the user-agent
interactions in the mixed-initiative rule learning method of
Disciple. While some of these results are still preliminary,
they have already been partially validated in the High
Performance Knowledge Bases program. In this program,
the Disciple-Workaround agent and the Disciple-COA
agent (another Disciple agent developed for the course of
action challenge problem), have been evaluated by
Alphatech in several intensive studies, demonstrating better
results than the other systems developed for the same
challenge problems. Descriptions of these evaluations and
of their results are presented in (Tecuci et al., 1999), for the.
workaround challenge problem, and in (Tecuci et al.,
2000a), for the course of action challenge problem.

To test the claim that domain experts can teach a
Disciple agent, we conducted a knowledge acquisition
experiment at the US Army Battle Command Battle Lab, in
Fort Leavenworth, Kansas. In this experiment, four military
experts that did not have any prior knowledge engineering
experience received around 16 effective hours of training in

MACHINE LEARNING 387

Artificial Intelligence and the use of Disciple-COA. They
then succeeded in training Disciple to critique military
courses of actions with respect to the Principle of Offensive
and the Principle of Security, in about three hours,
following a modeling of the critiquing process that was
discussed with them at the beginning of the experiment. At
the end of the experiment they completed a detailed
questionnaire that revealed high scores for the perceived
usefulness and usability of Disciple. A detailed description
of this experiment is presented in (Tecuei et al., 2000b).

We give credit for these successes of the Disciple
approach to the extensive use of mixed-initiative teaching
and learning methods.

The Disciple approach continues to be developed in the
new DARPA program called "Rapid Knowledge
Formation." This time the challenge problem is the
identification and testing of the strategic center of gravity
candidates of opposing forces in military conflicts. This
work in done in cooperation with the US Army War
College.

Acknowledgments. This research has been performed in
the GMU Learning Agents Laboratory and was sponsored
by the Defense Advanced Research Projects Agency
(DARPA), Air Force Research Laboratory, Air Force
Material Command, USAF, under agreement number
F30602-00-2-0546, and by the Air Force Office of
Scientific Research (AFOSR) under grant no. F49620-00-1-
0072. The U.S. Government is authorized to reproduce and
distribute reprints for Governmental purposes
notwithstanding any copyright annotation thereon. The
views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily
representing the official policies or endorsements, either
expressed or implied, of DARPA, AFOSR, AFRL, or the
U.S. Government. Bogdan Stanescu, Michael Bowman,
Cristina Cascaval, Catalin Balan, Elena Popovici, and other
members of the LALAB have contributed to successive
versions of Disciple.

References

Boicu M., Tecuci G., Bowman M., Marcu D., Lee S.W.,
and Wright K. 1999. A Problem-Oriented Approach to
Ontology Creation and Maintenance. In Proceedings of the
Sixteenth National Conference on Artificial Intelligence,
Workshop on Ontology Management, Menlo Park, CA:
AAAI Press.

Boicu M., Tecuci G., Marcu D., Bowman M., Shyr P.,
Ciucu F., and Levcovici C. 2000. Disciple-COA: From
Agent Programming to Agent Teaching. In Proceedings of
the Seventeenth International Conference on Machine
Learning, Stanford, CA: Morgan Kaufmann.

Bowman M., Tecuci G., and Boicu M. 2000. A
Methodology for Modeling and Representing Expert
Knowledge that Supports Teaching-Based Intelligent. In
Proceedings of the Seventeenth National Conference on
Artificial Intelligence and the Twelfth Conference on

Innovative Application of Artificial Intelligence, 1065.
Menlo Park, CA: AAAI Press.

Chaudhri V., Farquhar A., Fikes R., Park D., and Rice J.
1998. OKBC: A Programmatic Foundation for Knowledge
Base Interoperability. In Proceedings of the Fifteenth
National Conference on Artificial Intelligence, 600 - 607.
Menlo Park, CA: AAAI Press.

Cohen P., Schrag R., Jones E., Pease A., Lin A., Starr B.,
Gunning D., and Burke M. 1998. The DARPA High-
Performance Knowledge Bases Project. AI Magazine
19(4): 25-49.

Jones E. 1998. HPKB Year I End-to-End Battlespace
Challenge Problem. Specification, Burlington, MA.

Tecuci, G. 1998. Building Intelligent Agents: An
Apprenticeship Multistrategy Learning Theory,
Methodology, Tool and Case Studies. London, England:
Academic Press.

Tecuci, G., Boicu, M., Wright, K., Lee, S.W., Marcu, D.
and Bowman, M. 1999. An Integrated Shell and
Methodology for Rapid Development of Knowledge-Based
Agents. In: Proceedings of the Sixteenth National
Conference on Artificial Intelligence, 250-257. Menlo
Park, CA: AAAI Press.

Tecuci G., Boicu M., Marcu D., Bowman M., Ciucu F., and
Levcovici C. 2000a. Rapid Development of a High
Performance Knowledge Base for Course of Action
Critiquing. In: Proceedings of the Seventeenth National
Conference on Artificial Intelligence and the Twelfth
Conference on Innovative Application of Artificial
Intelligence, 1046-1053. Menlo Park, CA: AAAI Press.

Tecuci G., Boicu M., Bowman M., Marcu D., Shyr P, and
Cascaval C. 2000b. An Experiment in Agent Teaching by
Subject Matter Experts. International Journal of Human-
Computer Studies 53: 583-610.

388 FLAIRS-2001

