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Abstract

The paper presents an approach to hierarchical
clustering based on the use of a least general
generalization (lgg) operator to induce a lattice
structure of clusters and a category utility ob-
jective function to evaluate the clustering qual-
ity. The objective function is integrated with a
lattice-based distance measure into a bottom-up
control strategy for clustering. Experiments with
well-known datasets are discussed.

Introduction

In the context of Machine Learning clustering is an ap-
proach to discovering structure in data. Therefore the
clusters are usually represented intensionally (in terms
of relations, properties, features etc.) and hierarchical
clustering techniques are of main interest. The term
often used for this area is conceptual clustering. Three
basic issues are important in conceptual clustering: the
type of cluster representation, the control strategy used
to search the space of possible clusterings and the objec-
tive f~mction used to evaluate the quality of clustering.
Clusters can be represented by necessary and sufficient
conditions for cluster membership (e.g. rules, decision
trees) or probabilistically - by specifying the probabil-
ity distribution of attribute values for the members of
each cluster. The control strategy determines the way
in which the clustering tree is generated (e.g. top-down,
bottom-up, hierarchical sorting). The objective func-
tion can be integrated in the control strategy or used
separately. The classical conceptual clustering system
COBWEB (Gennari, Langley, & Fisher, 1989) uses the
former approach - the search in the space of possible
clusterings is based on an objective function that eval-
uates ttm candidate clusterings. The latter approach is
taken in another classical system, CLUSTER/2 (Michal-
ski & Stepp, 1983), that generates an initial clustering
and then optimizes it iteratively by using aa objective
function. A more recent approach along these lines is
proposed in (Fisher, 1996).

Recently a distance-based approach to creating con-
cept hierarchies has been proposed in (Markov, 2000).
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It has been described as a general framework for in-
ductive learning. In this paper we further develop this
approach for the purposes of conceptual clustering by
integrating an objective function into its control strat-
egy.

Basic algorithm

Given a set of examples (observations) the task of 
hierarchical clustering system is to create a tree struc-
ture of clusters where the children of a cluster partition
the examples covered by their parent. The algorithm
proposed in (Markov, 2000) accomplishes this task 
using a lattice-based distance measure and employing a
bottom-up control strategy. Using a given set of exam-
ples E the algorithm builds a partial lattice structure
G, where E is the set of all maximal elements of G. The
algorithm works in agglomerative fashion and at each
step selects pairs of observations/clusters to be merged
in single clusters. The selection is based on a distance
measure and the new cluster is produced by applying
a least general generalization operator (lgg) on the se-
lected pair. The lgg is based on a subsumption relation
that is used next to remove the observations/clusters
subsumed by the newly generated cluster. The algo-
rithm works iteratively and at each step updates two
sets: C - the set of top level clusters in the current hier-
archy where the two clusters to be merged are selected
from and G - the current hierarchy accumulating all
instances and clusters generated by lgg. Formally the
algorithm is as follows:

1. Initialization: G = E, C = E;

2. If ICI = 1 then exit;

3. T = {hlh = lgg(a, b), (a, b) = argmina,beC d(a, b)};

4. DC = {ala ¯ C and 3h ¯ T,h ~_ a};

5. C=C\DC;

6. G=GUT, C=CUT;

7. go to step 2.

Hereafter we limit our discussion to an attribute-value
representation with nominal attributes for both exam-
ples (observations) and clusters. The partial ordering
-~ in this representation is the set inclusion C. The lgg
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(infimum) of two elements is defined as their intersec-
tion, i.e. lgg(a, b) = a nb. The distance function is
defined as d(a, b) = -c°vCa) +2-c°v(b} - 2 x 2-c°~(~nb),
where coy(a) is the number of examples covered by 
i.e. coy(a) = I{b[b ¯ E,a -~ b}[.

Since in most cases the set T created in step 3 is not a
singleton, a restricted version of the algorithm is usually
used. The basic idea is instead of the whole set T to
use just a single element of T (arbitrarily chosen). This
reduces the computational complexity of the algorithm1

and also narrows the created hierarchy.
We illustrate the algorithm by a simple example of

hierarchical clustering of a set of 10 animals represented
by 6 attributes: covering, milk, homeothermic, habitat,
eggs and gills. Table 1 shows the initial set E and the
resulting set G. To display the examples/clusters we
use positional encoding, i.e. each element of the hi-
erarchy is a list of values or underscores (denoting 
missing attribute). In this representation the members
of a cluster h are all elements of G that h subsumes,
i.e. the elements that have the same values at the same
positions as h, where an underscore in h matches all
values. Obviously because of the random choice in step
3, the clusterings may differ from run to run. Figure
1 shows two possible hierarchies generated by the algo-
rithm (the bottom hierarchy corresponds to the set G,
shown in Table 1). We are further interested in the fol-
lowing questions: how can we evaluate these hierarchies
and can we use this evaluation to improve the quality
of clustering. We discuss these questions in the next
section.

Evaluating clustering quality
A commonly used measure to evaluate clustering qual-
ity is the category utility function proposed in (Gluck
& Corter, 1985). This is the objective function used in
COBWEB (Gennari et al., 1989) and in many related
systems. Category utility attempts to maximize both
the probability that two objects in the same category
have attribute values in common and the probability
that objects from different categories have different at-
tribute values. The category utility function assigns a
value CU(Ck) to each cluster Ck as follows:

CU(Ck) = E [P(Ai =Vi jlCk)2 -P (Ai = V~j)2]

i j

The sums are calculated for all attributes Ai and all
their values Vii. The probabilities P(Ai = Vi~lCk) and
P(AI = V~j) are calculated as relative frequencies of the
occurrence of the V~j value for the Ai attribute within
the cluster Ck and within the whole set of observations
respectively.

CU(C~) estimates the quality of individual clusters.
To measure the quality of a clustering we need a func-
tion that evaluates the quality of a partition of data.

1The complexity of the algorithm in this case is O(n3),
where n = IEI. More details on this issue can be found in
(Markov, 2000).
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E G
{feathers, f, t, land, t, f} {feathers, f, t, land, t, f}
{hair, t, t, air, f, f} {hair, t, t, air, f, f}
{feathers, f, t, air, t, f} {feathers, f, t, air, t, f}
{hair, t, t, land, f, f} {hair, t, t, land, f, f}
{scales, f, f, land, t, f} {scales, f, f, land, t, f}
{none, f, f, land, t, f} {none, f, f, land, t, f}
{none, t, t, sea, f, f} {none, t, t, sea, f, f}
{hair, t, t, sea, t, f} {hair, t, t, sea, t, f}
{scales, f, f, sea, t, f} {scales, f, f, sea, t, f}
{scales, f, f, sea, t, t} {scales, f, f, sea, t, t}

{scales, f, f, sea, t, _}
{_, f, f, land, t, f}
{_, f, f, _, t, _}
{hair, t, t, _, f, Q
{feathers, f, t, _, t, f}
{_,f, _, _, t, _}
{hair, t, t, _, _, f}
{_, t, t, _, _,f)
{-, -, -, _, _, -}

Table 1: Attribute-value representation of observations
and clusters for the "animals" example (t and f stand
for true and false respectively)

[ scales,f,f, sea,t,t }-F

{ scales,f,f, sea, t,_ } -- { scales,f,f, sea,t,f } -R
_i

. / . ............................. [ hair,t,t,sea,t,f )-M

{ ..... sea~_,_} .I " .... {_,t,t,sea,_,f} ...... "{none,t,t,sea,f,f}-M

{ ......... f} ...... { hair,t,t,_,f, fl ...... {hair,t,t,air,f,fl-M

~, ̄ { feathers,f,t,land,t,f ) -B { hair,t,t,land,f,fl-M

{ feather~,f,t,air, t,f }-B
{ scales,f,f, land.t,f}-R

{_,f,f, land,t.f} " "
" { none,f,f, land,t.f }-A

I scales,f,f, sea.t,f } -R

{w, alea,f,f, sea,t~}--- {scales,f, Lsea,t,t)-F

{_,f,f,_J~J -- {~f,f, land,t,f~ -- |scalcs,f,f,|and.t,f}-R

[ f~,f,t, land,l,f} -B [ none~ f, Lland,t,f }-A

.... | feather, f, kair.t, f } -B
I hair, t,t,air, f,f J -M

{ hair,t,t,_,f,f} ...........
........ [ hair,t,Lland.f,f) -M... ...

{ none,Lt,sea,f,f}-M {hair,t,t,sea,t,f)-M

{_,f~.t,.~l - Ifeathers,Lt~.t.f}

{ ~,.-,-=)

[~t,t,~_,f} -- {hair,t,t~wf}

Figure 1: Concept hierarchies for the "animals" exam-
ple



For this purpose the average category utility of clusters
in the partition is used, i.e. PU({C1,C2,...,Cn}) =

cu(c ).
In hierarchical clustering the partition utility function

PU can be used at any level of the concept hierarchy.
Applied to the children of the root PU evaluates the
overall partition of the observations. For example the
PU scores for the top level partitions of the two concept
hierarchies in Figure 1 are as follows:

PU({ {_, _, _, sea, _, _}, {_, _, _, _, _, f}}) = 0.191
PU({{_,f, _, _,t, _}, {_,t,t,_,_,f} }) = 0.612

These PU scores show that the second clustering is
better than the first one. This a/so becomes clear if
we look at the class memberships of the observations.
The classes that the observations belong to are shown
at the leaves of the hierarchies as M, B, R, F and A
(denoting mammal, bird, reptile, fish and amphibian
respectively). These labels are not used by the algo-
rithm, however they may be used to evaluate "exter-
nally" the created hierarchy. For the bottom cluster-
ing, {_, t, t, _, _, f} represents the cluster of mammals,
and the other cluster - {_, f, _, _, t, _}, groups all non-
mammals. The structure of {_, f,_,_, t, _} reflects the
natural way of grouping birds, reptiles, fish and am-
phibians. This observation is also supported by the
PU scores of the lower level partitions. For example,
ttle PU scores of the partitions of the mammal clusters
in the two hierarchies are:

PU({_, _, _, _, _, f}) = 0.374
PU({_, t, t, _, _, f}) = 0.421

Another reason for these scores is that the mammal
and non-mammal clusters in the first hierarchy overlap
(they share 3 observations) while in the second hierar-
chy they are completely disjoined.

The above considerations suggest that there is a kind
of propagation of "good" PU scores (i.e. good par-
titions of data) from the lower to the upper levels of
tile concept hierarchy. This in turn suggests a way to
integrate the PU scores as an objective function into
the control strategy of our basic algorithm described
in Section 2. This algorithm uses a bottom-up control
strategy. At each iteration a new cluster h is added to
the hierarchy. Since at this stage the whole partition at
that level of the hierarchy is still unknown, h should be
evaluated individually with respect to its contribution
to the quality of clustering for the partition in which
it will be included at a later step. That is, h has to
maximize its CU score. To implement this we modify
step 4 of the basic algorithm accordingly:

4. h = argmaxheT CU(h), T {h }, DC= { al a 6
C,h ~ a};

An important issue in bottom-up clustering is how
to determine when to stop merging clusters. In
our algorithm the newly generated cluster h replaces
the clusters/observations that it subsumes. Since
the goal is to maximize the quality of clustering in
terms of PU scores, it is expected that CU(h) 

PU({hl, h~,..., hn}), where hi, h2, ..., hn are the clus-
ters/observations that h subsumes, i.e. h --< hi,
i = 1,2,...,n. This condition can be used to stop
the process of merging clusters and thus to cut off
the hierarchy at a certain level. For a greater cut-
off, a stronger condition can be defined as CU(h) 
max{CU(hl), CU(h2), ..., CU(h,)}). In fact, we intro-
duce a cutoff parameter W 6 [0, 1], that is used to
control this process by gradually switching between the
two conditions: CU(h) > PU({hl,...,hn}) + W *
(max{CU(hl), ..., CU(hn)} - PU({hl,..., h,,}).

The cutoff parameter W is used in step 4 of the al-
gorithm in the following way. If h satisfies the stopping
condition, then its successor with maximal CU score
is used as a top-level cluster (an immediate successor
of the root). This is achieved by excluding the latter
and all its successors from the candidates for further
merging.

Experiments

To evaluate the performance of the algorithm we con-
ducted experiments with some well-known datasets.
They include the previously discussed "animals" data
containing 10 examples with 6 attributes, the "zoo"
dataset - 59 examples with 16 attributes and the small
soybean dataset - 47 examples with 35 attributes, all
obtained from the UCI ML repository (Blake & Merz,
1998). The class attributes were removed from all three
datasets and after the concept hierarchies were gener-
ated the class information was used as an additional,
"external" criterion to evaluate the quality of cluster-
ing. The idea was that the top-level partition should
reflect the class distribution in the set of observations.
As a basis for comparison a version of ttle COBWEB
algorithm provided by the WEKA-3 ML system (Wit-
ten & Frank, 1999) was used in the experiments. Table
2 shows the PU scores of the top level partition pro-
duced by two clustering algorithms - the lattice-based
clustering with gain function (denoted as LGG-PU) and
COBWEB with the three data sets discussed above. Ta-
ble 3 shows the performance of the same algorithms on
the same datasets measured by the entropy of the class
attribute in the clusters from tim top level partition.
The entropy of the class attribute in a cluster Ck is
calculated as follows:

H(Ck) = - ~ P(C = ~) log 2 P(C = 1~),
.i

where V/ are the values of the class attribute C, that
occur in the examples belonging to cluster Ck. Then the
entropy in a partition {Cl, C.,, ..., Ck}, or the partition
entropy PH is:

PH({Cl, C2, ..., Cn}) ~ ~H(Ck),
k

where the terms C~l are weight coefficients ttmt ac-
count for the cluster size.
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LGG-PU COBWEB
animals (10 obs, 6 attrs) 0.505 0.505

zoo (59 obs, 16 attrs) 0.745 0.721
soybean (47 obs, 35 attrs) 0.75 1.46

Table 2: PU scores for the top level partition of three
datasets

LGG-PU COBWEB
animals (10 obs, 6 attrs) 0.27/4 0.27/4

zoo (59 obs, 16 attrs) 1.03/7 0.99/4
soybean (47 obs, 35 attrs) o/8 o.4914

Table 3: PH scores/number of clusters for the top level
partition of three datasets

In the ideal case each cluster contains examples of a
single class and then the PH function of this partition
is 0. In the general case small PH scores mean that the
partition of the data corresponds to the distribution of
the class attribute. Of course this also depends on the
representativeness of the set of examples (i.e. whether
it contains a sufficient number of instances from every
class).

A further experiment was conducted with the rela-
tional version of the basic algorithm. As described in
(Markov, 2000) this algorithm can handle relational
data by using a relational lgg. For our representa-
tion such lgg can be implemented by anti-unification.
This is an operation that replaces same constants with
same variables. For example Igg({a,b,a},{c,d,c}) 
{X, Y, X}, where X and Y are variables. The main ad-
vantage of this representation is the possibility to define
explicitly equality of attribute values. To investigate the
behavior of our clustering algorithms we used the train-
ing sample of the MONK1 dataset (Thrun et al., 1991).
This dataset describes a concept with 6 attributes by 61
positive and 61 negative examples. The propositional
description of the target concept is:

(octagon, octagon ........ }
(square, square ........ }
(round, round ........ }
{ ........ red, _}

While the relational one is:

(x, x ........ }
{ ........ red, _}

For clustering we used just the positive examples. The
whole set of examples (including the negatives) was
used for "external" evaluation of the top level clusters.
The experiments with the MONK1 data are summarized
in Table 4.

The main findings reflected in the experiments are
the following:

¯ For propositional data the LGG-PU algorithm per-
forms similarly to COBWEB as long as the PU scores
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PU PH #of clusters
COBWEB 0.14 0 7
LGG-PU 0.16 0 2

Table 4: Results of clustering the MONK1 data. The
PU and PH scores, and the number of clusters refer to
the top level partition. PH is calculated by using the
whole set of examples (positive and negative).

are concerned. In some cases LGG-PU achieves much
better PH scores than COBWEB. A cutoff parameter
W close to 0 results in high PU scores and low PH
scores. With W close to 0, the PU scores are low and
the PH scores are high.

In the relational case both algorithms achieve 0 en-
tropy at the top level partition. LGG-PU however
built two clusters that match exactly the original defi-
nition of target concept. COBWEB created very frag-
mented definition obviously because it does not take
into account the relational similarity between obser-
vations.

In the relational example (MONK1) the PU scores are
low for both algorithms. This is because the two top
level concepts in the original definition of the target
concept substantially overlap.

Related work
Most of the approaches to hierarchical and conceptual
clustering are related to two classical systems - CLUS-
TER/2 (Michalski & Stepp, 1983) and COBWEB (Gen-
nari et al., 1989). CLUSTER/2 generates an initial clus-
tering and then optimizes it iteratively by attempting
to minimize the cluster overlapping. Clusters are repre-
sented as necessary and sufficient conditions for cluster
membership (e.g. rules) and are derived by a standard
concept learning algorithm. In COBWEB the clusters
are represented probabilistically by the probability dis-
tribution of the attribute values for the members of each
cluster. The control strategy used is based on the PU
function. There are many other systems that follow the
COBWEB’s approach. Some of them elaborate the ob-
jective function by using information-based heuristics
(e.g. the information gain used in decision tree induc-
tion), Bayesian variants of PU (used in AUTOCLASS
(Cheeseman, Kelly, Self, Stutz, Taylor, & Freeman,
1988)), or the Minimal Message Length (MML) prin-
ciple (used in SNOB (Wallace & Dowe, 1994)). Others
combine the COBWEB and the CLUSTER/2 approaches
- they first generate initial clustering and then optimize
it by using various objective functions. The approach
taken in (Fisher, 1996) is based on this idea. It uses
hierarchical sorting to induce a clustering and then it-
eratively simplifies it by applying various techniques as
redistribution, reordering etc.

There is third approach to hierarchical clustering that
is based on lattice structures. The lattices are a useful



mathematical formalism that resembles cluster hierar-
chies. The problem with the use of lattices for cluster-
ing is that the techniques for generating clusters should
have some formal properties (usually not present in the
heuristic algorithms). The computational complexity
of the lattice algorithms is also high. Nevertheless lat-
tice approaches to clustering exist and some of them are
successfill. For example (Guenoche & Mechelen, 1993)
use Galois lattices to induce hierarchical clusterings for
binary attributes. This approach is based on the so-
called maximal rectangles and employs some standard
algorithms from Galois lattice theory.

Our approach is also based on lattices. Its theoreti-
cal basis is the distance measure introduced in (Markov,
2000) that allows to evaluate the similarity between ex-
amples/clusters as well as to apply consistently a gen-
eralization operation (lgg) to build the lattice struc-
ture. The use of a PU-based objective function allows
to improve the quality of clustering and to reduce the
complexity of the algorithm. The main features of the
approach can be summarized as follows:

¯ LGG-PU represents clusters as propositional or rela-
tional rules. Similarly to CLUSTER/2 it allows clus-
ter overlapping.

¯ It uses a PU-based objective function to evaluate the
quality of clustering.

¯ The control strategy of the algorithm is a bottom-
up greedy search based on a consistent integration
of a lattice-based distance measure and a PU-based
objective function.

¯ LGG-PU is able to build relational descriptions of the
clusters. Although the PU function does not work
well on relational data, it is still useful in the control
strategy of the algorithm.

Conclusion
We described an approach to hierarchical clustering
based on the use of a least general generalization (lgg)
operator to induce a lattice structure of clusters and a
category utility objective function to evaluate the clus-
tering quality. The objective function is integrated with
a lattice-based distance measure into a bottom-up con-
trol strategy for clustering. The preliminary experi-
ments showed that the approach coinpares well with
other similar approaches and in some cases outperforms
them. The future work will address the following issues:

¯ Extending the algorithm to handle numeric at-
tributes. This can be achieved by extending the par-
tial ordering relation (presently set inclusion) and 
defining a proper lgg that can generalize numeric at-
tributes too. Then we can use the same distance
measure and a PU function that uses probability dis-
tributions.

¯ Although the algorithm evaluates clusters locally, it
also maximizes the overall clustering quality since the
local evaluation goes through all levels of the hierar-
chy in a bottom-up fashion. Of course, as this is a

greedy search, there is no guarantee that the global
maximum can be found. With this respect other ap-
proaches to evaluating the quality of clustering have
to be investigated too (e.g. the recursive ones used
in COBWEB).
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